Responsable/s del laboratorio

 

intro

ORGANIZACIÓN MACROMOLECULAR Y FUNCIÓN CELULAR

Nuestro objetivo es entender cómo los elementos de la maquinaria de la división bacteriana (el divisoma) actúan coordinadamente como un sistema integrado para llevar a cabo su función esencial. Para abordar estas cuestiones desarrollamos y aplicamos aproximaciones de reconstitución bioquímica del conjunto mínimo de proteínas necesarias para iniciar la división bacteriana (el complejo del proto-anillo) en sistemas que reproduzcan la organización espacio-temporal del divisoma en la membrana celular y la aglomeración molecular existente en el interior bacteriano. intracelular. Esta estrategia integradora, que combina enfoques cuantitativos y sintéticos, ayudará a completar nuestro conocimiento sobre el proceso de la división y abrirá nuevos horizontes para aplicaciones farmacológicas.

 

PROYECTOS EN CURSO (ver detalles en páginas correspondientes de Proyectos Investigación):

1. Reconstrucción bioquímica de divisomas bacterianos mínimos en el tubo de ensayo.

2. Reactividad y organización de macromoleculas en ambientes citomiméticos (aglomerados y confinados).

3. Interacciones macromoleculares en disolución y en membranas: Bioquímica física

 

 

 

 

 

 

 

 

Rivas G, Minton AP.  [2016]. Macromolecular Crowding In Vitro, In Vivo, and In Between. Trends Biochem Sci. 41:970-981.

Monterroso B, Zorrilla S, Sobrinos-Sanguino M, Keating CD, Rivas G.  [2016]. Microenvironments created by liquid-liquid phase transition control the dynamic distribution of bacterial division FtsZ protein. Sci Rep. 6:35140.

Rivas G, Vogel SK, Schwille P.  [2014]. Reconstitution of cytoskeletal protein assemblies for large-scale membrane transformation. Curr Opin Chem Biol. 22:18-26.

Martos A, Jiménez M, Rivas G*, Schwille P*  [2012]. Towards a bottom-up reconstitution of bacterial cell division. Trends Cell Biol. 22:634-643

Monterroso B, Alfonso C, Zorrilla S, Rivas G  [2013]. Combined analytical ultracentrifugation, light scattering, and fluorescence correlation spectroscopy studies on the associations and assembly of the Escherichia coli cell division FtsZ protein. Methods (doi:pii: S1046-2023(12)00328-3. 10.1016/j.ymeth.2012

Hernández-Rocamora VM, Reija B, García-Montañés C, Natale P, Alfonso C, Minton AP, Zorrilla S, Rivas G*, Vicente M*  [2012]. Dynamic interaction of the Escherichia coli cell division ZipA and FtsZ proteins evidenced in nanodiscs. J. Biol. Chem. 287:30097-30104

 

Fondos

- EU Project 675132 (H2020-MSCA-ITN-2015). Innovative Training Network. "MASS

Spectrometry TRaining network for Protein Lipid adduct Analysis". MASSTRPLAN. Oct

2015-Sept 2019

- 2015-2019: MASSTRPLAN - "MASS Spectrometry TRaining network for Protein Lipid adduct Analysis" EU Project 675132 (H2020-MSCA-ITN-2015). Innovative Training Network.

- 2015-2016: ODIVITUBE - Biochemical organization of minimal divisomes in the test tube. Spanish Government, Plan Nacional I+D+i, BFU2014-28941-C03-02.

- 2012-2014: SYNVISION - Synthetic biology of bacterial cell division: reconstruction of minimal divisomes in biomimetic membrane systems. Spanish Government, Plan Nacional I+D+i, BIO2011-28941-C03-03.

- 2011-2014: Synthetic biology of bacterial cell division. Human Frontier Science Program RGP0050-2010.

- 2009-2013: DIVINOCELL - Exploiting Gram-negative cell division targets in the test tube to obtain anti-microbial compounds. European Commission, FP7-HEALTH-F3-2009-223431.

 

Más información

GR LAB

Centro de Investigaciones Biológicas - CSIC

Ramiro de Maeztu 9 - E28040 Madrid

Tel. +34 918373112 ext. 4304

E-mail: grivas@cib.csic.es

GRLAB web: http://www.cib.csic.es/es/grupo.grivas

 

HOW TO REACH GRLAB:

http://www.cib.csic.es/es/como_llegar.php?

 

GR-CV: Quantitative and mechanistic biochemistry; protein biophysics; synthetic biology; protein-protein interactions; protein-membrane interactions; analytical ultracentrifugation; light scattering; optical biosensing. PhD Chemistry, Universidad Autónoma Madrid (1989). Postdoctoral: NIH, Bethesda, USA (1990-1992) and Biozentrum, Univ. Basel, CH (1993). CSIC tenure-track scientist at (1994). CSIC staff scientist (1995). Group leader at CIB (1996). CSIC senior investigator (2006).

 

GRLAB: Quantitative biochemistry; physical biochemistry; biophysics; protein-protein interactions; protein-membrane interactions; macromolecular assembly; bacterial cell division; synthetic biology; biophysical methods (analytical ultracentrifugation, light scattering, fluorescence spectroscopy, optical biosensing)

 

GRLAB SCIENTIFIC ACHIEVEMENTS:

- Introduction in Spain of advanced methods of analytical ultracentrifigation (1994) and static light scattering (2006, 2009) to measure macromolecular interactions in solution.
- Development of equilibrium sedimentation methods to study the behavior of proteins in highly crowded solutions that reproduce biological environments (1999, 2004, 2010).
- Description of the effect of macromolecular crowding on the oligomerization and assembly of the essential cell division FtsZ protein from E. coli (2001, 2003).
- Sedimentation velocity (2005) and static light scattering (2012) analysis of FtsZ polymers in the presence of GTP.
- Analytical ultracentifugation and static light scattering analysis of the associations between GDP-FtsZ oligomers and ZipA in solution (2010).
- Reconstitution of bacterial division proto-ring elements in phospholipid bilayer nanodiscs (2012), coated beads (2012), giant vesicles (2011,2013) and confined droplets (2013).