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Abstract

Intracellular traffic in Aspergillus nidulans hyphae must cope with the challenges that the high

rates of apical extension (1μm/min) and the long intracellular distances (>100 μm) impose.

Understanding the ways in which the hyphal tip cell coordinates traffic to meet these challenges

is of basic importance, but is also of considerable applied interest, as fungal invasiveness of

animals and plants depends critically upon maintaining these high rates of growth. Rapid apical

extension requires localization of cell-wall-modifying enzymes to hyphal tips. By combining

genetic blocks in different trafficking steps with multidimensional epifluorescence microscopy

and quantitative image analyses we demonstrate that polarization of the essential chitin-

synthase ChsB occurs by indirect endocytic recycling, involving delivery/exocytosis to apices

followed by internalization by the sub-apical endocytic collar of actin patches and subsequent

trafficking to TGN cisternae, where it accumulates for ~1 min before being re-delivered to the

apex by a RAB11/TRAPPII-dependent pathway. Accordingly, ChsB is stranded at the TGN by

Sec7 inactivation but re-polarizes to the apical dome if the block is bypassed by a mutation in

geaAgea1 that restores growth in the absence of Sec7. That polarization is independent of

RAB5, that ChsB predominates at apex-proximal cisternae, and that upon dynein impairment

ChsB is stalled at the tips in an aggregated endosome indicate that endocytosed ChsB traffics

to the TGN via sorting endosomes functionally located upstream of the RAB5 domain and that

this step requires dynein-mediated basipetal transport. It also requires RAB6 and its effector

GARP (Vps51/Vps52/Vps53/Vps54), whose composition we determined by MS/MS following

affinity chromatography purification. Ablation of any GARP component diverts ChsB to vacu-

oles and impairs growth and morphology markedly, emphasizing the important physiological

role played by this pathway that, we propose, is central to the hyphal mode of growth.

Author summary

Filamentous fungi form long tubular cells, called hyphae, which grow rapidly by apical

extension, enabling these sessile organisms to explore substrates and facilitating tissue
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invasion in the case of pathogenic species. Because the shape of the hyphae is determined

by an external cell wall, hyphal growth requires that cell-wall sculpting enzymes polarize to

the tips. Endocytosis is essential for hyphal growth, and it was suspected that this results

from its participation in a recycling pathway that takes up cell-wall enzymes from the pla-

sma membrane and re-delivers them to the apex. Here we track the trafficking of a chitin

synthase (a cell-wall modifying enzyme) to demonstrate that it is polarized by endocytic

recycling. This chitin synthase is delivered by exocytosis to the apex, but diffuses away until

being captured by a subapical collar of actin patches (sites of endocytosis) from where it

reaches a sorting endosome before undergoing transport to the nearest trans-Golgi cister-

nae and incorporating into secretory vesicles that re-deliver the enzyme to the apex. Be-

cause impairing transit across this pathway compromises apical extension markedly and

results in severe morphological defects, the pathway could be manipulated to prevent fun-

gal pathogenicity of plants and humans, an enormous burden on human welfare.

Introduction

Fungal pathogenicity of plants and animals constitutes an enormous burden on human wel-

fare (reviewed by [1]), bequeathing a compelling case for understanding basic fungal biol-

ogy. A characteristic feature of filamentous fungi is a vegetative phase consisting of tubular

cells—hyphae—that grow exclusively by apical extension. In the ascomycete A. nidulans
hyphae arise from dispersal mitospores denoted conidiospores that, upon germination,

establish a polarity axis that, if undisturbed, can relentlessly support growth by apical exten-

sion. Thus polarized growth is a distinctive feature of hyphal fungi, and one that underlies

their capacity to colonize substrates or, in the case of pathogenic species, invade live tissue.

Hyphal shape is determined by a cell wall that is formed by de novo synthesis as hyphal tip

growth proceeds [2]. Thus, to sustain the strikingly rapid rates of growth (circa 1 μm/min at

30˚C in A. nidulans) [3] the secretory pathway must efficiently deliver to the apex the enzymes

that synthesize the cell wall in the hyphal tip dome and the lipids required for the increase in

plasma membrane (PM) surface. Many fungi streamline this delivery by gathering a stock of

secretory vesicles (SVs) at a structure denoted the Spitzenkörper (SPK), adjacent to the apical

PM. According to the widely accepted model of hyphal growth [4–9], the SPK acts as a vesicle

supply center that stores SVs before they are tethered to, and fuse with, the plasma membrane

(PM) at the apical surface [4–9]. Vesicles at the SPK are loaded with cell wall-modifying en-

zymes (CWMEs) [10–14], demonstrating that these cargoes are exocytosed in a polarized fash-

ion. Yet considering that key CWMEs such as β(1–3) glucan synthase [12] and chitin synthases

[15] are integral membrane proteins, apical delivery alone cannot account for their polarization,

which additionally requires a mechanism(s) that counteracts retrograde diffusion across the

PM.

Work in S. cerevisiae demonstrated that localized exocytosis coupled to the rapid endocytic

recycling of the synaptobrevin homologue Snc1p generates polarity [16]. The concentration

of the endocytic internalization machinery of A. nidulans and many other fungi in a collar

behind the hyphal tip [17–19], conveniently located to serve as diffusion barrier for integral

membrane proteins, led us and others to suggest that the A. nidulans synaptobrevin SynA

[18,20–22] and the phospholipid flippase DnfA [14] are polarized in the apical dome by endo-

cytic cycling. This kinetic polarization mechanism implies that cargo taken up by endocytosis

must return rapidly to the PM by exocytosis, as indirectly supported by studies with FM4-64

[23]. However, the identity of the compartment(s) involved in these recycling pathways(s) has
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not been characterized, nor has their physiological role been established, even though they rep-

resent the quintessence of the fungal lifestyle.

The different compartments of the A. nidulans secretory pathway (ER [24,25], early Golgi

(EG) [26,27] and trans-Golgi network (TGN) [28]) have been characterized. The TGN delivers

clathrin-coated carriers to the endosomal system [29] and SVs to the SPK [6]. The biogenesis

of these SVs at TGN cisternae involves the recruitment of RAB11 mediated by the TRAPPII

oligomeric GEF complex [6,30] and the subsequent engagement of kinesin-1 and myosin-5

motors that cooperate to transport SVs to the SPK [3,31], from which they reach the apical

PM. [3,31]

Here we track the endocytic recycling pathway that determines the apical delivery and tip

localization of CWMEs using fluorescent tagged versions of ChsB, a chitin synthase specific to

filamentous fungi that is crucial for hyphal growth [32,33]. We demonstrate that ChsB is polar-

ized to the apical dome by indirect endocytic recycling, such that the enzyme that diffuses

away from the apex is internalized by the subapical collar of actin patches, re-routed from

endosomes to Sec7-containing TGN cisternae in a GARP- and Rab6-dependent manner and

subsequently re-delivered to the apex.

Results

The nearly essential chitin synthase ChsB appears to be a cargo of

endocytic recycling

ChsB is a chitin synthase belonging to class III (a class without representatives in yeasts)

[33,34]. It is an integral membrane protein consisting of a 543-residue cytosolic domain and a

372-residue heptahelical membrane domain (Fig 1A). We chose this protein as model cargo to

track endocytic recycling for two reasons: firstly, it has been determined that ChsB is polarized

[32,35], suggesting that this enzyme is a cargo of endocytic recycling; secondly, chsBΔ is virtu-

ally lethal [32,33], resulting in microcolonies that do not progress (Fig 1B). That ChsB is physi-

ologically crucial implies that altering its subcellular localization is directly translated into

growth reductions/abnormal cell morphology. Thus, to determine if fusions of ChsB with fluo-

rescent proteins are functional, we tagged the gene endogenously, which additionally mini-

mized the possibility of perturbing the trafficking/steady state localization of ChsB with

overexpression. C-terminal tagging was very debilitating, whereas N-terminal tagging did not

affect growth (S1 Fig), indicating that the N-terminal fusion proteins fulfill the physiological

role of ChsB. GFP-ChsB and mCherry-ChsB were indistinguishable from each other in locali-

zation (S1 Fig).

ChsB localizes to the SPK and to the PM of the tip, extending 3–4 μm behind the apex in

rapidly growing hyphae (Fig 1C). We will refer to this PM region as ‘the apical dome’. In addi-

tion, ChsB localizes to internal puncta resembling Golgi cisternae. The localization of ChsB to

the apical dome suggested that once the enzyme is delivered to the PM by secretory vesicles

(SVs) derived from the SPK, it diffuses away from the apex. However, its diffusion is restricted

to the tip region because ChsB is efficiently taken up by endocytosis at the subapical collar of

actin patches (Fig 1D scheme). Indeed when we combined mCherry-ChsB with GFP-SynA, a

v-SNARE undergoing endocytic recycling [18,20], both proteins displayed identical localiza-

tion (Fig 1D), indicating that they use similar mechanisms to polarize.

The subapical endocytic ring takes up ChsB

We used several approaches to demonstrate that the endocytic collar indeed takes up ChsB.

Firstly we imaged GFP-ChsB with the endocytic patch marker AbpA-mRFP [17], which
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showed that the distal limit of the ChsB apical dome coincides with the localization of the

endocytic collar (Fig 2A). S1 Movie illustrates the spatial coupling of the endocytic collar and

the ChsB apical dome, which move forward concertedly as hyphal tip growth proceeds, as

demonstrated for SynA [18]. Secondly we added the F-actin depolymerizing drug latrunculin

B (latB) to growing hyphae, which disassembles endocytic actin patches [28]. This treatment

resulted in ChsB outspreading beyond the tip region (Fig 2B)(the average perimeters ± S.D. of

the PM region occupied by ChsB were 10.4 ± 1.7 μm and 28.4 μm ± 4.6 in untreated and tr-

eated hyphae, respectively). As exocytosis is largely prevented by actin depolymerization and

as secondary polarity axes were not observed, this finding implies that the spreading of ChsB

results from unrestricted diffusion of the enzyme previously delivered at the apex by exocyto-

sis, strongly implicating endocytosis in confining ChsB localization to the apical dome.

Thirdly we determined the localization of ChsB in a null fimAΔmutant, which is severely

impaired in endocytosis [19]. fimAΔ results in morphogenesis defects, yet a proportion of the

cells gave rise to hyphae, and these hyphae showed uniform distribution of ChsB in the PM

(Fig 2C). The fact that ChsB localizes to the plasma membrane of the mutant implies that

fimAΔ does not block ChsB exocytosis, which is consistent with previous work demonstrating

that the seven transmembrane domain pH signaling receptor PalH localizes to the PM in a

fimAΔ background, showing that fimAΔ does not prevent the delivery of a polytopic exocytic

protein to the PM either [22]. Thus the uniform distribution of ChsB in fimAΔ hyphae appears

to result from unrestricted diffusion of ChsB resulting from the endocytic defect.

To corroborate this conclusion we used the conditional expression allele slaB1 [36], based

on the nitrate reductase promoter, allowing the synthesis of the key endocytic regulator SlaB

in cells cultured on nitrate as nitrogen source but not on ammonium. The absence of SlaB vir-

tually blocks endocytosis, allowing cells to establish polarity but not to maintain it efficiently,

such that conidia germinated on ammonium give rise to a population of morphologically

Fig 1. Polarization of ChsB. (A) domain organization of ChsB. CS-N, Chitin_synth_1N (PF08407); CS, Chitin_synth_1 (PF01644); the C-terminal transmembrane

region includes 7 predicted helices (gray boxes). (B) Growth phenotype of chsBΔmicrocolonies compared to the wt; plates incubated for 3 days at 37˚C. (C) Subcellular

localization of endogenously tagged GFP-ChsB. Arrows in the magnified inset indicate the Spitzenkörper (SPK). The image is a MIP of a deconvolved z-stack. (D) The

synaptobrevin homologue SynA and ChsB strictly colocalize in the apical crescent, besides the SPK. Images are MIPs of deconvolved z-stacks. The scheme shows an

interpretation of endocytic recycling.

https://doi.org/10.1371/journal.pgen.1007291.g001
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Fig 2. Endocytosis required to maintain ChsB polarity. (A) The basal limit of the GFP-ChsB apical crescent

coincides with the position of the endocytic collar labeled with mCh-AbpA (actin binding protein1). Right graph,

linescans along the longitudinal hyphal axis for the green (ChsB) and red (AbpA) channels. (B) Latrunculin B

(100 μM) treatment facilitates the diffusion of GFP-ChsB to plasma membrane regions located far away from the apex.

Arrows indicate the limits of the PM region occupied by ChsB in untreated and treated examples. The perimeters of

the regions occupied by GFP-ChsB in the PM of treated and untreated hyphae are plotted on the right (n = 15 tips).

Error bars indicate S.D. The two populations, which passed normality tests, are significantly different (P< 0.0001) in

an unpaired t-test with Welch’s correction. (C) Localization of ChsB in a fimAΔ hypha compared to the wt. (D)

Scheme: slaB1 drives expression of SlaB under the control of the nitrite reductase promoter (niiAp); Images show the

localization of ChsB in a strain carrying the conditional expression allele slaB1 as the only source of SlaBSla2 and its

comparison with the wt. slaB1 drives expression of this key endocytic regulator on nitrate as N source but not on

ammonium. The germlings derived from conidiospores continuously cultured on medium containing nitrate or

ammonium, as indicated. All images represent MIPs of deconvolved z-stacks.

https://doi.org/10.1371/journal.pgen.1007291.g002
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abnormal germlings containing short hyphal tubes [36]. These slaB1 germlings accumulate

ChsB throughout their entire PM (Fig 2D), unlike wt cells of a similar length, which contain

polarized ChsB. This uniform and predominant localization of ChsB to the PM in the slaB1
background closely resembles the localization of the also exocytic cargo PalH [22], and could

not be explained if slaB1 prevented exocytosis.

Next, to show that ChsB diffusion resulting from an endocytic deficit occurs from the tips,

we used slaB1 in a promoter down-shift experiment. To this end we pre-cultured wt and slaB1
germlings on nitrate (Fig 3A and 3B, left) and shifted them to ammonium. The shift had no

effect on ChsB localization to the apical dome in the wt (Fig 3A, right). In contrast, it progres-

sively depleted SlaBSla2 in slaB1 hyphae, which continued growing for several hours using the

protein synthesized before the promoter was shut off (Fig 3B, scheme). After this time, the

resulting population of slaB1 hyphae could be classified in two classes. One class consisted of

cells with ‘ruffled’ appearance in which ChsB localizes, depolarized, at the PM, which often

shows clumps of ChsB (Fig 3B, top right). In slaB1 cells shifted to ammonium SynA also forms

similar clumps, which have been shown to associate with invaginations of the PM resulting

from endocytic block [36]. Thus this class of cells appears to correspond to hyphae in which

endocytosis was essentially blocked. Their ‘ruffled’ appearance indicates the collapse of the

main polarity axis, with concomitant activation of secondary polarity axes from which ChsB

spreads away (Fig 3B, top right). The marked impairment of polarity maintenance that such

profusion of secondary polarity axes reveals suggests that strong impairment of endocytosis

might affect polarity landmarks/determinants (see discussion).

The second slaB1 class consisted of morphologically normal hyphae, in which the major

polarity axis had been maintained and that did not show clumps of ChsB in the PM (Fig 3B,

bottom right), consistent with these cells reflecting a stage in which endocytosis is impaired,

but to a lesser extent. Remarkably, in these cells ChsB spread away from the tips (compare

with the wt in Fig 3A), such that the perimeter of PM occupied by the reporter was ~6 times

greater than in wt controls (Fig 3C, average values were 62.5 ± 16.4 S.D. and 9.5 ± 1.5 S.D. in

slaB1 and wt cells, respectively). These results show that that downregulation of endocytosis

permits unrestricted diffusion of ChsB delivered to the apical surface, resulting in its disper-

sion away from the apical dome. Therefore we conclude the polarization of ChsB to the apical

dome requires endocytosis.

Within the cell ChsB localizes to the tip-proximal cisternae of the TGN

What is the internal compartment consisting of punctate structures where ChsB resides?

These structures resembled Golgi cisternae [28], which in A. nidulans are not stacked, being

therefore resolvable by optical microscopy [21]. Thus we investigated the Golgi localization of

ChsB with the early Golgi SedVSed5 syntaxin and with the TGN reporter PHOSBP; Fig 4A).

ChsB and PHOSBP showed almost complete colocalization: 95% of 178 ChsB puncta in n = 10

hyphae were labeled with PHOSBP, contrasting with only 8% of 122 ChsB puncta in n = 11

hyphae containing SedVSed5 (Fig 4B). Thus ChsB localizes to the TGN. However, not every

TGN cisternae contained similar levels of ChsB, with the highest intensity of ChsB signal cor-

responding to the apex-proximal ones (Fig 4A). To illustrate, we quantified ChsB fluorescence

in 60 TGN cisternae located within the apical-most 10 μm of n = 6 hyphae and compared the

resulting values with those for PHOSBP. Cisternal ChsB fluorescence negatively correlated with

the distance to the apex (P = 6E-12, r = -0.75, n = 60), whereas PHOSBP fluorescence did not

(Fig 4C). Thus, this key observation suggested that cisternae that are closer to the endocytic

collar accumulate more ChsB, arguably because they would be first to receive ChsB taken up

by endocytosis. It further suggested that recycling of ChsB proceeds, at least in part, by way of
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the TGN, rather than directly from a sorting endosome. This is an important conclusion, as a

direct pathway connecting sorting endosomes with the PM has been recently described in the

related ascomycete S. cerevisiae [37]

The greater abundance of ChsB in the apicalmost TGN cisternae additionally suggested

that retrograde (here meaning ‘away-from-the-apex’) transport connects the endosomal com-

partments that receive traffic from the subapical collar of actin patches with the TGN. If so, the

plus-end-towards-the-apex polarity of microtubules at the tips implies that such transport

Fig 3. SlaB downregulation results in ChsB depolarization. (A) GFP-ChsB localization in hyphae derived from

germlings that had been pre-cultured on medium containing nitrate as sole N source (left) and subsequently shifted to

medium containing ammonium (right). (B) Promoter down-shift experiment with slaB1. The same nutritional regime

used in (A) results in downregulation of SlaB levels (scheme), markedly affecting the polarization of GFP-ChsB in the

PM. Class I (‘ruffled’) and class II (‘normal’) hyphae are depicted. For class I the inset shows a characteristic GFP-ChsB

‘clump’ associated with the PM (arrowed). (C) Quantitation of the perimeter of PM occupied by ChsB in wt (n = 19)

and slaB1 (n = 15) cells pre-cultured on nitrate and shifted to ammonium. The two datasets were significantly different

(P< 0.0001) in an unpaired t-test. All images represent MIPs of deconvolved z-stacks and are shown at the same

magnification, with the exception of the inset, which is magnified 2.5 times.

https://doi.org/10.1371/journal.pgen.1007291.g003
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might involve dynein. We investigated this possibility with two ts mutations, nudA2 and

nudA5, affecting the dynein heavy chain, which behave as hypomorphs at 37˚C [3,38]. ChsB

distribution was normal in nudA2 and nudA5 cells at 28˚C. However, when these cells were

shifted to 37˚C for ~2 h (which did not affect ChsB localization in the wt), ChsB delocalized to

an intracellular aggregate in the tip region. The phenotype was very homogeneous within the

mutant populations (to illustrate we determined that, for nudA5, 94% of n = 68 tips contained

the tip aggregate, contrasting with none of n = 74 wt tips). The abnormal ChsB aggregate of

the nudA mutants formed apparently at the expense of the PM/SPK pool, which was markedly

diminished (Fig 5A). Of note, under similar conditions nudA2 and nudA5 do not prevent the

accumulation of RabERAB11 SVs at the SPK [3] indicating that the ChsB aggregate is not exocy-

tic. Indeed we determined that this nud cell compartment in which ChsB stalls is readily acces-

sible (5 min after dye loading) to the endocytic tracer FM4-64 [39], confirming that it has early

endocytic origin (Fig 5B). In contrast this compartment does not stain with the late endosome

tracer CMAC [20]. Thus the above results strongly indicate that traffic between endosome

compartments at which endocytosed ChsB initially arrives and the TGN involves dynein.

Fig 4. ChsB localizes to the tip-proximal cisternae of the TGN. (A) colocalization of internal puncta containing GFP-ChsB with the TGN

marker mRFP-PHOSBP, and absence of colocalization with the early Golgi marker mCh-SedVSed5 (syntaxin 5). Note the characteristically

fenestrated structures of the TGN puncta in the left panels. (B) Quantitation of internal ChsB structures that contain Golgi markers for 178

puncta in n = 10 mRFP-PHOSBP hyphae and 122 puncta in n = 11 mCh-SedVSed5 hyphae. Error bars indicate mean ± SD. The two datasets were

significantly different (P< 0.0001) in an unpaired t-test. (C) Plot of fluorescence intensities in the PHOSBP and the ChsB channels vs. distance to

the apex. Data of n = 60 TGN cisternae were pooled from 6 hyphae. The fluorescence of ChsB negatively correlates with the distance to the apex

(Pearson’s r = -0.748, P = 6E-12) whereas that of PHOSBP does not (r = -0.08, P = 0.53).

https://doi.org/10.1371/journal.pgen.1007291.g004
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ChsB resides at the TGN only transiently

Next we determined the fate of ChsB in the TGN. Time-lapse microscopy (time resolution

1–2 fps) showed that TGN cisternae acquire ChsB only transiently. Fig 6A is an example

kymograph representing the intensities of the cytosolic ChsB puncta vs. time (in the y axis).

In this plot the ‘lengths’ of the ‘vertical’ lines’ slightly tilted in the direction of growth reflect

the residence time of ChsB in the TGN cisternae. The average residence time, determined

with n = 36 events, was 58 ± 4 sec S.D. (Fig 6B), which is about half the 2 min average life-

time previously determined for TGN cisternae [6]. This suggested that the duration of ChsB

at the TGN would be bound by its arrival to an existing cisterna and its departure from it,

incorporated as cargo of SVs that are delivered to the SPK before undergoing fusion with

Fig 5. Recycling of ChsB from endosomes necessitates dynein. (A) Left, schematics summarizing the rationale of these experiments.

Middle images: localization of GFP-ChsB in hyphal tips of the wt and of strains carrying ts mutations in nudA encoding the dynein heavy

chain, before and after shifting cells from 28˚C to 37˚C. Note the aggregate of ChsB in the nudA mutants at 37˚C (see scheme), which

forms apparently at the expense of the signal in the apical dome and the SPK (which is not detectable in the mutants at 37˚C). Right,

linescans of the ChsB channel for the hyphae displayed in the images (1 px, 0.103 μm). (B) Hyphal tip of a nudA2 cell shifted to 42˚C,

stained with the endocytosed membrane tracker FM4-64.

https://doi.org/10.1371/journal.pgen.1007291.g005
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the PM. ChsB and RabERAB11 strictly colocalize at the SPK over time (S2 Movie), implicat-

ing RabERAB11 carriers in ChsB transport between the TGN and this structure. Because the

background ‘noise’ due to the strong predominance of ChsB in the tip region impeded

tracking of ChsB-containing SVs on their way to the SPK we attempted to investigate the

exiting of ChsB indirectly, by correlating the end of the ChsB cycle with the arrival of

RabERAB11 to cisternae. We detected a few isolated events in which GFP-RabERAB11 was

recruited at the end of the mCh-ChsB cycle (Fig 6C), but these experiments were hampered

by photobleaching. Thus, to determine the involvement of RabERAB11 we asked if disabling

the RabERAB11 GEF TRAPPII [30] impeded ChsB localization to the SPK and the PM using

the hypA1 mutation that inactivates Trs120, a key component of the TRAPPII complex. Fig

6D shows that following a shift to 37˚C hypA1 cells delocalized ChsB, which gradually dis-

appeared from the SPK and the apical dome to internal structures. Thus ChsB resides at the

TGN only transiently and RabERAB11 is necessary for the delivery of ChsB to the SPK and

the PM.

Fig 6. Dynamics of ChsB in the TGN. (A) GFP-ChsB is a transient resident of TGN cisternae: kymograph traced along the longitudinal axis

of a growing hypha showing multiple events of transient ChsB recruitment to TGN cisterna. The strong signal at the apex is the SPK. (B)

Selected examples of events of ChsB recruitment to TGN cisternae and statistical analysis of the average residence time of ChsB on them

(58 ± 4 S.D., n = 36); (C) region of a kymograph showing two examples of RabERAB11 being recruited at the end of the ‘ChsB cycle’. The green

and red channels of a cell co-expressing mCh-ChsB and GFP-RabERAB11 were filmed simultaneously with a beam splitter at 1 fps time

resolution (D) hypA1ts cells (hypA encodes A. nidulans Trs120 in TRAPPII) expressing GFP-ChsB were filmed at 28˚C and at different times

after shifting the culture to 37˚C on the microscope stage. The time required for the culture medium to reach 37˚C is ~15 min. Note the

delocalization of ChsB at the apical dome and the SPK to internal structures.

https://doi.org/10.1371/journal.pgen.1007291.g006

Endocytic recycling supports hyphal growth

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007291 April 2, 2018 10 / 28

https://doi.org/10.1371/journal.pgen.1007291.g006
https://doi.org/10.1371/journal.pgen.1007291


ChsB is stranded in the TGN if Sec7 is inactivated

The S. cerevisiae SynA orthologue Snc1 traffics from endosomes to the TGN before returning

to the PM [40]. However, the existence of a second pathway mediating recycling directly from

sorting endosomes has been demonstrated recently in S. cerevisiae [37]. A diagnostic feature of

this ‘direct’ pathway is that its cargo does not accumulate in TGN cisternae in non-permissive

conditional sec7ts cells [Sec7 is the ARF1 GEF at the TGN [41]]. As our data above strongly

suggested that ChsB undergoes endocytic recycling indirectly, by way of the TGN (Fig 7A

scheme), we imposed a genetic block using hypB5, a ts mutation in the gene encoding Aspergil-
lus Sec7. To simultaneously monitor the effects of hypB5 on ChsB localization and on the orga-

nization of the Golgi, we used a mCh-ChsB strain co-expressing the GFP-tagged t-SNARE

TlgBTlg2 [42] to track TGN cisternae with an integral membrane protein. Neither ChsB nor

TGN cisternae were affected by hypB5 at 28˚C (Fig 7B), nor did a temperature shift to 37˚C

affect them in the wt (Fig 7A). In sharp contrast, in hypB5 cells ChsB largely relocalized from

the SPK and PM to internal structures at ~15 min after the shift. These ChsB-containing struc-

tures were closely associated (Fig 7B), and to some extent colocalized, even at this early time

point, with the network of TlgBTlg2 cisternae (Pearson’s coefficient = 0.47; Li’s intensity corre-

lation quotient (ICQ) = 0.218)(S2 Fig). Between 15 and 30 min at 37˚C internal ChsB struc-

tures and TlgBTlg2 cisternae tended to aggregate, and colocalization became apparent (Fig 7C;

Pearson’s = 0.74; Li’s ICQ = 0.31)(S2 Fig shows an extended set of examples; as reference, the

two colocalizing TGN markers TlgBTlg2 and PHOSBP show and ICQ of 0.339, [26], see also Fig

7 legend). At ~40 min hypB5 TGN cisternae aggregated but ChsB and TlgBTlg2 still showed

colocalization (S2 Fig). Thus ChsB accumulates in membranes with TGN identity after impos-

ing a sec7 block. Taken together, all the above data strongly indicated that the ChsB steady

state localization at the SPK and the apical dome is maintained by endocytic recycling through

the Sec7-containing TGN.

A point mutation in GeaAGea1 bypassing Sec7 restores ChsB localization to

the apical dome

The geaA1 mutation results in a Y1022C substitution in a conserved tripeptide of GeaAGea1, the

only early Golgi GEF of ARF1 [27]. Whereas wt GeaA localizes to the early Golgi, GeaAY1022C is

slightly shifted towards the TGN and reaches the PM [27], suggesting that the mutated motif

mediates the retention of GeaA in Golgi compartments. Remarkably geaA1 substantially

bypasses the essential role of Sec7 in the TGN [27].

To determine if geaA1 suppresses the mislocalization of ChsB caused by hypB5 we used an

endogenously tagged geaA1 allele encoding GFP-GeaAY1022C, which suppresses hypB5 as effi-

ciently as the untagged allele [27]. GFP-GeaAY1022C enabled us to simultaneously follow the

fate of both mCh-ChsB and the mutant ARF1 GEF in the hypB5 (sec7ts) background. Fig 8A

shows that at 28˚C geaA1-GFP localized to an apical crescent and to internal Golgi structures

as described [27], whereas ChsB localization was normal (i.e. to cytosolic puncta, the SPK and

the apical dome). Next we tested whether geaA1 rescued the hypB5-dependent delocalization

defect of ChsB at 37˚C. Indeed ChsB relocalized to the apical dome in hypB5 geaA1 double

mutant cells shifted to the restrictive temperature (Fig 8B, right), which contrasted markedly

with the localization of ChsB to internal structures in hypB5 single mutant controls under the

same conditions (Fig 8B, left). Thus the polarized PM localization of ChsB necessitates Sec7

(HypB), and geaA1 restoring the growth defect resulting from hypB5 also restores the ChsB

PM localization defects, directly implicating Sec7 in ChsB polarization.
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Fig 7. A hypB5 (= sec7ts) mutation strands ChsB in the TGN. (A) Images of a wt strain co-expressing mCh-ChsB and GFP-TlgB

cultured at 28˚C and following a shift to 37˚C. (B) Images of the corresponding hypB5 strain before and 14 min after the temperature

shift. (C) The hypB5 mutant at a later time-point. Right graph, plot of Li’s intensity correlation coefficient (ICQ) used to estimate

colocalization. ‘Ai’ and ‘a’ are the ChsB channel’s current and mean intensity, whereas ‘Bi’ and ‘b’ indicate the same values for the

TlgBTlg2 channel. Colocalization results in a pixel cloud spread on the right side of the plot. ICQ ranges from −0.5 (exclusion) to 0.5

(complete colocalization). All images are MIPs of deconvolved z-stacks.

https://doi.org/10.1371/journal.pgen.1007291.g007
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ChsB recycles to the TGN from an endosomal compartment located

upstream of the RAB5 domain

RabBRAB5 is the major RAB acting in pre-vacuolar early endosomes (EEs) and a key driver of

endosome maturation, as it recruits Vps34, the PtdIns3P-synthesizing kinase required for ini-

tiating the multivesicular body pathway [43]. It also recruits to endosomes the CORVET com-

plex that mediates fusion events between endosomes as well as the microtubule-dependent

motors facilitating their long-distant transport [20,43–47] (Fig 9A, scheme). Thus, if ChsB

would recycle to the TGN from RAB5-containing endosomes a rabBΔ mutation should affect

its localization strongly. However, ChsB was normal in a rabBΔ background (Fig 9B). Further-

more, vps33-1ts affects the key SM protein Vps33 of the CORVET and HOPS complexes, thus

playing an essential role in the maturation of endosomes [42,44,48,49]. However vps33-1ts did

not mislocalize ChsB at 42˚C (Fig 9C), in agreement with rabBΔ data. Thus, the endosomal

Fig 8. ChsB, stranded at the TGN by hypB5 (= sec7ts), is rescued by geaA1. Images of hypB5 mCh-ChsB strains

carrying or not geaA1-GFP (encoding GFP-tagged GeaAY1022C), photographed at 28˚C or after a shift to 37˚C for 27

min (hypB5), or 37 min (hypB5 GFP-GeaAY1022C). Note that GeaAY1022C-GFP was the only source of GeaAGea1 in the

double mutant. Also note the colocalization of GeaAY1022C with ChsB in the apical dome at both temperatures.

https://doi.org/10.1371/journal.pgen.1007291.g008
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compartment from which ChsB recycles lies upstream of PtdIns3P-, CORVET- and ESCRT-

containing EEs. This compartment, we hypothesize, is a loosely defined sorting endosome

akin to the post-Golgi endosome proposed by Pelham and co-workers [50].

ChsB recycling depends on GARP

To investigate the route that delivers ChsB from endosomes to the TGN we focused on RAB6

(RabCRAB6 in Aspergillus), a master regulator of retrograde traffic connecting endosomes with

Fig 9. RabCRAB6- and GARP-dependent recycling of ChsB from an endosome located upstream of the RaBRAB5 domain. (A) Scheme of the

effectors subordinated to RabBRAB5 in early endosomes (EEs)(see text). (B) Normal localization of ChsB in a rabBΔmutant. (C) Normal

localization of ChsB in a vps33ts strain at 28˚C and following a shift to 42˚C. (D) Left, delocalization of ChsB in rabCΔ; Middle, plot of average

intensities of ChsB in wt and rabCΔ apical domes determined from 2 x 50 pixel arch-shaped linescans as in the scheme. P values estimated with

an unpaired t-test; Right plot, linescans (mean values ± S.E.M. bars) of maximal intensities across the whole width of the same tips used for the

plots. (E) Delocalization of ChsB from the apical dome in the vps52Δmutant; middle and right plots and statistical analysis as in (D). Note that

for (D) and (E), hyphal tip images were not deconvolved to better display the differences between the wt and the mutants.

https://doi.org/10.1371/journal.pgen.1007291.g009
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the Golgi [51]. A rabCΔ mutation [21] substantially diminished the amount of ChsB localizing

to exocytic post-Golgi membranes, making it barely detectable at the SPK and substantially

reducing its presence in the apical dome (Fig 9D). These data strongly implicated RabCRab6 in

ChsB recycling.

A key effector of RAB6 proteins tethering fusion between endosome-derived retrograde

transport carriers and the TGN is the Golgi-associated retrograde protein (GARP) complex,

consisting of Vps51, Vps52, Vps53 and Vps54 in yeast [52–54]. We deleted the corresponding

Aspergillus orthologues. Consistent with the corresponding gene products acting in a complex,

all four deletion mutations were phenotypically similar in growth tests, markedly reducing col-

ony size at all tested temperatures (Fig 10A), although vps51Δwas slightly less debilitating, as

similarly reported in yeast [55]. Moreover, the fact that their colony phenotypes resembled

that of rabCΔ [21] suggests that the growth-limiting function of RabCRab6 involves GARP.

vps51Δ, vps52Δ vps53Δ and vps54Δ further resembled rabCΔ in that all four mutations cause

morphological aberrations and result in numerous small vacuoles (S3 Fig), consistent with the

wt alleles playing the expected roles in endosome/Golgi interface [52].

The strong growth phenotype of GARP null mutations and the morphological effects that

they cause indicated that GARP components are crucial for the organization of exocytic com-

partments. Indeed GARP mutations affected the TGN in two ways: (i) they caused depolariza-

tion of cisternae, which normally concentrate near the tip; (ii) they resulted in smaller cisternae

lacking the characteristic fenestrated morphology of the wt (S4 Fig). These two phenotypes are

shared with rabCΔ [21]. These observations are consistent with GARP capturing membranes

delivered from endosomes to the TGN and further suggest that the normal polarization of TGN

cisternae depends on this Rab6/GARP-mediated retrograde traffic.

To establish that Aspergillus Vps51, Vps52, Vps53 and Vps54 indeed associate to form

GARP, we purified the complex from cell-free extracts using a single-step S-tag affinity purifi-

cation protocol [56]. Firstly we pulled-down the complex with endogenously S-tagged (thus

expressed at physiological levels) Vps54. Besides non-specific contaminants, silver staining of

pulled-down material revealed four bands exclusive of Vps54-S-tag extracts. MS/MS spec-

trometry identified these bands as Vps54 (AN7993), Vps53 (AN2736), Vps52 (AN4014) and

Vps51 (AN3015), but Vps51 appeared substoichiometric (Fig 10B). Thus we used endoge-

nously tagged Vps51-S-tag to pull-down GARP. Fig 10C displays colloidal Coomassie-stained

gels corresponding to Vps54-S-tag (left) and Vps51-S-tag (right) samples. Only one band was

differentially shifted by the presence of the S-tag, and MS/MS identified this band as Vps51.

Vps51 was clearly more abundant in the pulled-down material of Vps51-S-tag cells, suggesting

that Vps51 dissociates from the complex during purification. S. cerevisiae Vps51 is not critical

for the assembly of the GARP complex but instead it is required for its stability [57]

Because GARP null mutations are similar in every phenotypic aspect, we chose vps52Δ to

study if ChsB traffic is GARP-dependent. Like rabCΔ, vps52Δ diminished the amount of ChsB

localizing to exocytic post-Golgi membranes (i.e. the SPK and the apical dome), and did so to

a similar extent than rabCΔ (Fig 9D and 9E). This suggests that ChsB carriers transiting from

endosomes to the TGN necessitate RabC/GARP to reach its destination efficiently. It also sug-

gests that additional, GARP/RabC-independent pathways must contribute to deliver endocy-

tosed ChsB to the TGN (see Discussion).

The above microscopy experiments were conducted at 28˚C. If endocytic cycling of ChsB

and other CWMEs is central to hyphal growth, it should become more important at 37˚C, in

which the A. nidulans apical extension rate is highest. Thus, we shifted wt and vps52Δ cells to

37˚C and examined the fate of ChsB, using CMAC staining to detect late endosomes and vacu-

oles. As noted above, the overall pattern of ChsB localization did not change in the wt shifted

from 28˚C to 37˚C, even though ChsB localized to vacuolar structures in regions located away
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from the tip, reflecting its normal turnover (Fig 11). This picture was changed dramatically

in the vps52Δmutant, in which the internal ChsB pool was progressively displaced to the

Fig 10. Characterization of A. nidulans GARP. (A) Growth of the wt and indicated mutant strains after 60 h of incubation.

(B) Silver staining of proteins retained after passing extracts of a strain expressing endogenously tagged Vps54-S-tag

compared with an untagged strain control. Proteins were eluted from S-tag columns. The indicated bands were excised and

their identity determined by MS/MS. (C) Comparison of S-tag affinity purifications as in (B) but using Vps54-S-tag and

Vps51-S-tag baits and colloidal Coomassie staining. Note the shift in mobility of Vps51 due to the S-tag.

https://doi.org/10.1371/journal.pgen.1007291.g010
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abundant vacuoles, whereas localization to exocytic post-Golgi membranes (i.e. the SPK and

the apical dome PM) was virtually abolished. Indeed at 2 h after shifting cells to 37˚C ChsB

localized almost exclusively to vacuoles (Fig 11). Therefore, at 37˚C, the capacity of GARP-

independent pathways is insufficient to deliver ChsB to the apex and to rescue efficiently endo-

some-derived recycling carriers from endocytic degradation.

Taken together these results indicate that RabC/GARP-mediated endocytic recycling by

way of the TGN is important to sustain the polarized delivery of ChsB to the growing apex, but

that alternate pathway(s) capable of fulfilling this task, particularly when workload is relatively

low, do exist.

Discussion

Chitin synthases like ChsB participate in the synthesis of the fungal cell wall at sites of polarized

growth. They act at the PM, using cytosolic uridine-diphospho-N-acetylglucosamine as substrate

and extruding the resulting polymeric fibrils to the periplasm [15]. As integral membrane pro-

teins, chitin synthases traffic towards the PM embedded into the membrane of SVs that, accord-

ing to the currently accepted model are first transported to the SPK and subsequently undergo

fusion with the PM [6–8](Fig 12). This two-stage model of traffic of SVs between the TGN and

the PM has recently received strong support by experimental evidence revealing the existence of

a negative correlation between the amount of SVs accumulating at the SPK and pulses of apical

extension, implying that these pulses of growth correspond with the ‘discharge’ of SVs from the

SPK [9]. Notwithstanding the fact that this mechanism ensures polarized delivery of ChsB, tar-

geted exocytosis alone would be unable to generate polarity, as once delivered to the PM, ChsB

would rapidly diffuse basipetally across the lipid bilayer, inappropriately extending its locale of

action to regions far away from the delivery site. Work by Valdez-Taubas and Pelham (2003)

establishing that locally exocytosed proteins polarize if they are endocytosed and recycled before

they can diffuse to equilibrium inspired studies reporting that the endocytic machinery of A.

nidulans predominates in a subapical collar that is appropriately located to act as a corral for pro-

teins that function at the tip [17–19]. Well-established examples of A. nidulans proteins polarized

by endocytic recycling are the R-SNARE SynA and the flippase DnfADnf1, for which endocytic

sorting motifs whose mutational inactivation results in loss of polarization have been identified

[14,21]. Notably, SynA polarization/endocytosis appears independent of the endocytic adaptor

AP-2, contrasting with the complete dependence displayed by DnfADnf1 [58]. We hypothesized

that a similar mechanism would restrict the activity of certain CWMEs to the hyphal tips. Here

we demonstrate that ChsB is confined within a PM region (‘the apical dome’) located between

the apex (the site of exocytosis) and the endocytic collar, and that impairment of endocytosis

results in loss of polarization, consistent with ChsB undergoing endocytic recycling. Rather than

recycling directly from endosomes [37] ChsB traverses through TGN cisternae, where it resides

for ~1 min at 28˚C before it is re-delivered to the SPK and the PM. Definitive evidence for ChsB

following this indirect recycling pathway came from the observations that the enzyme is stranded

in internal structures with TGN identity if Sec7 is acutely inactivated, and that the geaA1 muta-

tion that bypasses the role of Sec7 at the TGN [27] restores normal ChsB localization.

How does the enzyme, recycling by way of the TGN, return to the SPK/PM? In A. nidulans
TGN membranes giving rise to SVs transit from Golgi to Post-Golgi identity following the

recruitment of RabERAB11 mediated by its GEF, TRAPPII [6,30]. The observation that the

acute inactivation of Trs120, a key component of TRAPPII, relocalizes ChsB from the apical

crescent to internal structures strongly suggests that ChsB follows this RAB11-dependent path-

way, which would be consistent with the widespread involvement of RAB11 orthologues in

endocytic recycling [59–63]. However, in N. crassa chitin synthases associate with a population
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of vesicles that localize to the central part (the ‘core’) of the SPK [64]. This core contains RAB1

(denoted here YPT-1) but not RAB11 = YPT-31), which instead associates with the peripheral

layer. A. nidulans might differ from N. crassa in this regard, as RabERAB11 does not show this

stratification [6], even though RAB1 is also present at the SPK (besides the Golgi) [26], where

it colocalizes with ChsB. Of note, work in S. cerevisiae has shown that RAB1 (Ypt1p) and

RAB11 (Ypt31) cooperate to regulate Sec7 in the TGN [41].

The dynein requirement

The fact that inactivation of dynein results in ChsB accumulation in a subapical membranous

compartment readily accessible to FM4-64 (Fig 5) strongly supports the existence of an

Fig 11. Delocalization of ChsB to the vacuolar system by vps52ΔWt and vps52Δ strains expressing GFP-ChsB photographed at 28˚C or

following a shift to 37˚C. Cells were stained with the vital dye CMAC (7-amino-4-chloromethylcoumarin) to reveal late endosomes and

vacuoles (CMAC shown in magenta in color composites). The main images are MIPs of unprocessed z-stacks, but the insets were

deconvolved to remove apical haze. Note that the contrast of the 28˚C vps52Δ image has been adjusted to reveal the cytosolic haze, with

‘empty holes’ corresponding to the nuclei. Colocalization of ChsB with CMAC in the 37˚C vps52Δ sample was complete.

https://doi.org/10.1371/journal.pgen.1007291.g011
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endosomal compartment through which ChsB transits in route between the PM and the

TGN. EEs, which contain and require RAB5 for function, move away from the tip using

dynein, but are unlikely to mediate this route because ChsB is normally polarized in a mutant

in which the major RAB5 paralogue is ablated (Fig 9B), supporting the contention that ChsB

originates from an endosome that lies upstream of, and is functionally different from RAB5

endosomes, and that dynein would be required to connect this with the TGN (Fig 12).

Fig 12. A model for ChsB recycling ChsB is transported with SVs (red) that accumulate at the SPK before being

transported and tethered to the apical PM to undergo fusion. Once inserted into the PM ChsB undergoes diffusion

away from the apex until it is captured and endocytosed by the subapical endocytic collar. Endocytic vesicles

containing ChsB reach a mosaic of sorting endosomes. Here domains enriched in RabBRAB5 acquire EE identity (blue),

engage dynein by means of the Hook complex and undergo basipetal transport and maturation across the degradative

endocytic pathway. ChsB segregates into ‘recycling’ domains (green) that are delivered to the TGN in a RabCRAB6-,

GARP- and dynein-dependent manner. Once at the TGN ChsB is selected into RabERAB11 SVs (red), perhaps with

cooperation of RabORAB1, and delivered to the SPK. Alternative minor pathways (thinner yellow arrows) between

degradative endosomes and either the TGN or the early Golgi (EG) that ensure the robustness of this crucial circuitry

must exist, accounting for the proportion of ChsB that persists in the apical dome in the absence of RabCRab6 /GARP.

https://doi.org/10.1371/journal.pgen.1007291.g012
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However, because dynein-mediated movement is linked to the maturation of EEs [43,65], it

is possible that the endosome membranes at which ChsB is stranded overlap with the aggre-

gate of membranes resulting from the inability of EEs to move away from the tip [20,47,66–

69]. In this scenario, the absence of pulling force due to lack of dynein might prevent two dif-

ferent domains of a sorting endosome, destined for recycling to the TGN and for endocytic

RAB5-dependent degradation, respectively, from being resolved (Fig 12), stalling ChsB in an

abnormal compartment of mixed identity. Notably SynA is also present in this abnormal

endosome [20], further underlining the similarities between ChsB and SynA trafficking.

The SynA pathway and RabC/GARP

SynA forms SNARE bundles containing Vti1, TlgATlg1 and TlgBTlg2 (the TGN syntaxin) [42],

potentially mediating fusion between membranes deriving from the above sorting endosome

and the TGN. Paradoxically a double tlgAΔ tlgBΔmutant is only slightly impaired in SynA local-

ization, indicating that recycling to the TGN can occur by an alternative pathway. Co-Immuno-

precipitation experiments suggested that this pathway involves SedVSed5 [42] (see also below).

Efficient transport from sorting endosomes to the TGN requires RabCRAB6 acting in its

capacity to recruit the GARP complex that tethers vesicles to the TGN [52]. Null GARP muta-

tions result in a major growth defect, underlining the key role that recycling to the TGN plays

in the physiology of hyphae. These mutations or rabCΔ incompletely delocalized ChsB from

the tip at 28˚C. However, complete ChsB delocalization took place after shifting cells to 37˚C,

and this delocalization must result from failure to recycle to the TGN from endosomes as it

occurs in parallel with ChsB diversion towards vacuoles. The apical extension rate is highest at

37˚C, in all likelihood imposing a heavier workload on recycling.

A possible ancillary factor of the tethering function of GARP, potentially accounting for the

ChsB remaining at the apical dome of GARP mutants at 28˚C, is the conserved oligomeric

Golgi (COG) complex [70], which can act both at the TGN [71], cooperating with syntaxin-6

(TlgBTlg2), and at the early Golgi, cooperating with syntaxin-5 (SedVSed5) [72–74]. It is also

possible that in the absence of GARP a proportion of ChsB recycles directly from the sorting

endosome [37]. However, the possibility that the biosynthesis of ChsB is augmented in GARP

mutants to compensate for the recycling defect seems unlikely, as the steady state levels of

ChsB are unaltered in a vps52Δmutant (S5 Fig). Thus our data suggest that alternate pathways

can maintain ChsB polarization, ensuring the robustness of endocytic cycling, which seems

crucial for rapid apical extension. Among these pathways, the GARP-mediated one appears to

be dominant, such that at 37˚C, the needs for recycling imposed by rapid apical growth can

scarcely be met in strains lacking GARP. Thus the cycling route followed by ChsB (and SynA)

would be akin to that followed by Snc1 in S. cerevisiae, which is Ypt6 (RabCRAB6)-dependent

[75]. Of note, the recycling of the A. nidulans flippase DnfADnf1 also appears to be Vps54

dependent [14]

In view of the debilitating growth phenotype of GARP mutations, we speculate that besides

ChsB other cargoes important for the hyphal mode of growth circulate through this endocytic

cycling pathway. Polarity landmarks are alluring hypothetical candidates, as suggested by the

instability of polarity axes resulting from down-shifting SlaBSla2 expression. In S. cerevisiae
Cdc42 has been shown to polarize by endocytic recycling, corralled by endocytosis at the site

of bud growth. Cdc42 recruits formin, polarizing actin cables, and thus transport of SVs, lead-

ing to positive feedback [76,77]. Notably yeast sla2Δ results, like A. nidulans SlaBSla2 downre-

gulation, in a multiplicity of polarity axes [77]. Phosphatidylserine transported with SVs helps

to stabilize Cdc42 [78], highlighting the potential role of lipids. However we note that polarity

determination in A. nidulans, which like many other fungi contains both Cdc42 and Rac1
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orthologues that show functional overlap [79], is likely to be more complex. Moreover, micro-

tubules, in addition to actin cables, transport SVs to the apex, mediating transport of other

polarity landmarks such as TeaR to the cell surface [80].

Additional potential cargoes for endocytic cycling are other CWMEs. In U. maydis two chi-

tin synthases and the 1,3-β-glucan synthase travel in the same secretory vesicle, hypothetically

facilitating cell wall synthesis [81]. In contrast, in N. crassa 1,3-β-glucan synthase and chitin

synthases appear to reside in different types of secretory vesicles [10,12]. Future work will ad-

dress whether other integral membrane CWMEs are co-passengers with ChsB in the recycling

pathway studied here. We should note that the ChsB/GARP pathway, critical for apical exten-

sion, is a possible target for antifungal intervention. In this regard a homozygous C. albicans
arl1Δ lacking a GTPase cooperating with RAB6 in the tethering of endosome-derived vesicles

to the TGN is deficient in filament formation and drastically reduced in virulence [82]

Materials and methods

Aspergillus techniques and strains

Complete (MCA) and synthetic complete (SC) media [83] containing 1% glucose and 5 mM

ammonium (+)-tartrate as carbon and nitrogen source, respectively, were routinely employed.

Strains used in this work are listed in S1 Table. Deletion alleles of chsB, vps51, vps52, vps53 and

vps54were obtained by transformation, using PCR-assembled constructs [84] (primers

detailed in S2 Table).

Fluorescent protein tagging

GFP-ChsB and mCh-ChsB were expressed from N-terminally tagged versions of chsB con-

structed by gene replacement after transformation with PCR-assembled constructs (primers in

S2 Table). For mCh-ChsB we used a ‘5-way PCR’ cassette [18] consisting of 916 bp of chsB ‘dis-

tal’ upstream region (primers MHG231 and MHG232), 1900 bp encoding A. fumigatus pyrG
(MHG233 and MHG234), 978 bp of chsB ‘proximal’ upstream (promoter) region plus 5’-UTR

(MHG235 and MHG236), 738 bp encoding mCh-(Gly-Ala)5 (MHG262 and MHG261) and

2171 bp encoding the N-terminal region of ChsB starting at the initiation Met codon (MHG239

and MHG174). The 6709 bp codon-adapted GFP-ChsB cassette was similar but contained a 744

fragment encoding GFP-(Gly-Ala)5 (MHG237 and MHG238) instead of the mCh-(Gly-Ala)5

fragment. Gene replacement events were genotyped by Southern blotting. Another version of

the N-terminal GFP cassette, engineered for riboflavin auxotrophy selection instead of pyrimi-

dine selection contained a 1971 bp fragment encoding A. fumigatus riboB (MHG282 and

MHG283) instead of the corresponding pyrGAf fragment.

The cassette for C-terminal GFP tagging consisted of a 4633 gene replacement DNA frag-

ment including, in sequential order, 900 bp of the chsB C-terminal coding region (MHG144

and MHG145), 1900 bp encoding A. fumigatus pyrG as above, 744 bp encoding (Gly-Ala)

5-GFP (MHG146 and MHG147), 289 bp of 3’-UTR (MHG148 and MHG149), and a further

800 bp of chsB downstream DNA (MHG152 and MHG153). The cassette for ChsB-mCh was

similar excepting the fluorescent protein tag, which consisted of a 744 bp fragment encoding

(Gly-Ala)5-mCherry (MHG246 and MHG271). Gene replacement events were genotyped by

Southern blotting.

General microscopy techniques and image acquisition

These have been described in detail [3]. Briefly hyphae were cultured in pH 6.8 ‘watch minimal

medium’ (WMM) using 8-well chambers (IBIDI GmbH, Martinriesd, Germany). Images were
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acquired with a Leica DMI6000 B inverted microscope equipped with a Leica 63x/1.4 N.A.

Plan Apochromatic objective and a Hamamatsu ORCA ER digital camera (1344 x 1024 pixels)

using, for single channel acquisition, Semrock GFP-3035B and TXRED-4040B ‘BrightLine’ fil-

ter cubes. For simultaneous channel acquisition a Dual-View beam splitter (Photometrics)

equipped with the supplier’s filter sets for GFP and mCherry fluorescence channels was used,

except for the experiment shown in the S2 Movie, which was performed with a Hamamatsu

ORCA Flash 4.0 CMOS camera coupled to a Gemini beam splitter (Hamamatsu) with appro-

priate filters. The incubation temperature for microscopy cultures was normally 28˚C. When

the incubation temperature was shifted from 28˚C to 37˚C [26] cultures reached the target

within 15–20 min. To determine the effects of vps33ts on ChsB, cultures were shifted to 42˚C

for 90 min in an external incubator, transferred to the microscope chamber pre-warmed at

37˚C and photographed immediately. FM4-64 (Molecular Probes, 1 μM) was loaded for 5 min

before washing with fresh medium [39]. CMAC (Molecular Probes, 10 μM) was loaded for 5

min followed by three washes with fresh medium [65]. Latrunculin B was used at a final con-

centration of 0.1 mM [28].

For shift-down experiments involving SlaBSla2 downregulation, slaB1 and wt conidia were

inoculated in WMM containing 0.05–0.1 mM nitrate as sole N source. Microscopy chambers

were first incubated at 26˚C for 10–11 h. At this point the medium was removed and substi-

tuted by WMM containing 40 mM ammonium chloride (after three washes with the same

medium). These secondary cultures were incubated for a further 12 h before being photo-

graphed (GFP-ChsB). Control cultures correspond to cells kept continuously cultured in

nitrate WMM.

Image manipulation and analyses

All images were processed using Metamorph 7.7.0. Once converted to 8-bit greyscale or 24-bit

RGB they were annotated with Corel Draw (Corel, Ottawa, Canada). Single channels are usu-

ally shown in inverted greyscale. When indicated, Z-stacks were deconvolved with Huygens

Professional (Scientific Volume Imaging, Hilversum, the Netherlands, EU). GraphPad Prism

7.03 (GraphPad software) and SigmaPlot 12.5 (Systat Software) were used for statistical analy-

sis (detailed in Fig legends) and graphical display of datasets. Movies were built with Meta-

morph. Annotated movies were converted to QuickTime using Image J, and file size was

adjusted using Sorenson or mpeg-4 compression.

For colocalization analyses we used maximal intensity projections (MIPs) of deconvolved

Z-stacks. Following channel alignment with Metamorph, images were further processed with

Image J (WCIF 1.37c). Li’s and Pearson’s colocalization coefficients [85] were determined for

ROIs (drawn with ‘freehand selection’) that covered the complete width of the hyphae exclud-

ing the ‘empty’ regions corresponding to the nuclei, which are devoid of Golgi cisternae. Li’s

coefficients [85] were calculated with the ‘intensity correlation analysis’ plugin. The resulting

individual data were exported to Microsoft Excel and used to obtain normalized intensity val-

ues, setting the maximal value to 1. Pearson’s coefficients for the above regions were calculated

with the Coloc2 colocalization plugin of FIJI.

To demonstrate that apex-proximal TGN cisternae are enriched in ChsB, intensities of

GFP-ChsB y mRFP-PHOSBP signals in 60 TGN cisternae located within the apicalmost 10 μm

were determined from maximal intensity projections of z-stacks. Intensity values were plotted

vs. distance to the tip. Datasets were analyzed with SigmaPlot to obtain the Pearson Product

Moment Correlation coefficients (r) and the corresponding P values.

To estimate the amount of polarized GFP-ChsB in wt, rabCΔ and vps52Δ strains, middle

planes of z-stacks were used to determine fluorescence intensities along 50 px-long and 2 px
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wide ROIs covering the plasma membrane in the apical domes (with Metamorph). Data were

plotted as average pixel intensities.

GARP purification

Briefly, mycelia were harvested from fungal cultures made with minimal medium supplemented

with 2.5% (v/v) corn steep liquor (Solulys 048R, Roquette Laisa S.A., Spain), and containing 20

mM ammonium sulfate and 3% sucrose (w/v) as main nitrogen and carbon sources, respec-

tively. Lyophilized mycelia (2 g dry weight) were ground with a ceramic bead in a FastPrep bead

beater. The resulting powder was mixed with 50 ml of 25 mM HEPES, pH 7.5, 0.5% IGEPAL,

300 mM KCl, 2 mM EDTA, 1 mM DTT, 2 M MG132 and Complete ULTRA EDTA-free prote-

ase inhibitor cocktail (Roche). The suspension was next homogenized with glass beads (0.6

mm) in the FastPrep for 15 sec at maximal power, and further incubated for 10 min at 4˚C in a

rotating wheel. This procedure was repeated twice before clarifying the extract by centrifugation

at 15,000 x g for 30 min. The supernatant was mixed with 500 μl of S-protein Agarose beads

(Novagen) (40 μl of packed beads per 100 mg of protein) and incubated for 4 h at 4˚C in a rotat-

ing wheel in the presence of BSA 1% (w/v). Beads were next washed four times with 10 ml of

washing buffer (25 mM HEPES pH 7.5, 300 mM KCl, 2 mM EDTA and 1 mM DTT) for 10

min at 4˚C. Proteins were eluted after boiling beads in Laemmli buffer or, for MS/MS determi-

nations, after incubation for 15 min at 37˚C with 500 μl of 10 mg/ml of S-peptide (KETAAAK-

FERQHMDS), adjusted at pH 7.5. Proteins were trichloroacetic acid-precipitated, resuspended

in Laemmli buffer and resolved by SDS-PAGE followed by silver staining for analytical pur-

poses or, for MS/MS of bands excised from the gels, with colloidal Coomassie. MS/MS and

band identification were as described [30].

Supporting information

S1 Fig. mCh-ChsB and GFP-ChsB comparison. Top, merge of MIPs of deconvolved z-stacks

of a mixed culture of gene-replaced mCh-ChsB and GFP-ChsB strains. Bottom, growth pheno-

type of the indicated gene-replaced strains is compared to the wt.

(PDF)

S2 Fig. Colocalization analyses of mCh-ChsB and GFP-TlgBTlg2 in a hypB5 (sec7ts) strain.

Pictures taken at different times after shifting cells at 37ºC, with indication of Pearson’s and

Li’s colocalization coefficients. Plots were used to calculate Li’s ICQ.

(PDF)

S3 Fig. CMAC staining of vacuoles in hyphae of strains with the indicated phenotypes.

(PDF)

S4 Fig. Abnormal morphology and depolarization of TGN cisternae resulting from GARP

mutations. Cisternae of the TGN were labeled with PHOSBP. Boxed regions were magnified

2.5 times in the right insets. Arrows point at examples of typically fenestrated cisternae that are

not seen in the mutants. For linescans, 1 px = 0.103 μm.

(PDF)

S5 Fig. Levels of GFP-ChsB are similar in wt and vps52Δ cells. Anti-GFP was used to detect

GFP-ChsB. Anti-PSTAIR antibody (AbCam) was used for the loading control. This antibody

detects a conserved epitope present in cyclin-dependent kinases. In A. nidulans it reacts with

PhoA (41.3 kda), NimXCdc2 (36.8 kDa) and PhoB (35.9 kDa) cyclin-dependent kinases.

(PDF)
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S1 Table. Strains used in this work.

(PDF)

S2 Table. Oligonucleotides used for genetic manipulations and diagnostic PCRs.

(PDF)

S1 Movie. GFP-ChsB and mCh-AbpA move forward concertedly as hyphal tip growth pro-

ceeds. Frames are maximal intensity projections of z-stacks acquired every 2 min over an 80

min time period. Time scale in min:sec.

(MOV)

S2 Movie. mCh-ChsB and GFP-RabERAB11 colocalize at the SPK over time. Frames are mid-

dle planes acquired every sec for a 4 min period, using a Gemini beam splitter. The movie is

accelerated 15 times. Time scale in min:sec.

(MOV)
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