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ABSTRACT: Apocarotenoids are among the most highly valued fragrance constituents, being also appreciated as synthetic building
blocks. This work shows the ability of unspecific peroxygenases (UPOs, EC1.11.2.1) from several fungi, some of them being
described recently, to catalyze the oxyfunctionalization of α- and β-ionones and α- and β-damascones. Enzymatic reactions yielded
oxygenated products such as hydroxy, oxo, carboxy, and epoxy derivatives that are interesting compounds for the flavor and fragrance
and pharmaceutical industries. Although variable regioselectivity was observed depending on the substrate and enzyme, oxygenation
was preferentially produced at the allylic position in the ring, being especially evident in the reaction with α-ionone, forming 3-
hydroxy-α-ionone and/or 3-oxo-α-ionone. Noteworthy were the reactions with damascones, in the course of which some UPOs
oxygenated the terminal position of the side chain, forming oxygenated derivatives (i.e., the corresponding alcohol, aldehyde, and
carboxylic acid) at C-10, which were predominant in the Agrocybe aegerita UPO reactions, and first reported here.
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■ INTRODUCTION

Apocarotenoids or norisoprenoids, which are usually formed
by partial oxidative degradation of carotenoids, include a wide
range of compounds with different chemical structures and
biological activities. Among these compounds, those having
thirteen carbon atoms, such as ionones and damascones, are
essential constituents of the aroma of tea, grapes, roses,
tobacco, and wine and are also relevant flavors or fragrances
that constitute an important economic resource for chemical
industries.1 Moreover, damascones and their derivatives have
also been identified as a novel class of potential cancer
chemopreventive phytochemicals.2

The introduction of hydroxyl or keto functionalities in these
compounds reduces their volatility and increases the long-
lasting odor.3 Most of these derivatives (3-hydroxy and 3-oxo-
α-ionone, 4-hydroxy- and 4-oxo-β-ionone, and hydroxy-β-
damascone isomers) are present in plants but in very small
amounts and extraction is not a viable process for their
industrial use. For this reason, they are usually prepared by
chemical synthesis and, therefore, alternative methods for the
bioproduction of these compounds are of high industrial
interest.1

Biotransformation of α- and β-ionones, and their respective
α- and β-damascone isomers, to a number of hydroxy and keto
derivatives has been reported for several fungi.3−7 However,
microbial biotransformations require long incubation times,
and often suffer from low conversion rates and substrate partial
degradation. On the other hand, biotransformations with
isolated enzymes (enzymatic in vitro conversion), such as some
cytochrome P450 monooxygenases (P450s),8−10 including
engineered P450 BM-3 variants,11,12 have also been reported.
Most P450s, however, have the disadvantages of requiring

expensive cofactors and auxiliary enzymes, and their stability is
usually low due to their intracellular nature.
Unspecific peroxygenases (UPOs, EC.1.11.2.1) represent a

relatively new and appealing type of biocatalysts for organic
synthesis that, unlike P450s, are extracellular enzymes
(therefore more stable) and only require H2O2 for activation.

13

However, in spite of all recent progress in our understanding of
UPO catalysis and application,14 some difficulties in UPO
application are yet to be solved. They include, in addition to
inactivation by hydrogen peroxide that affects enzyme reuse,
the present limitations to heterologously express UPOs in
bacterial systems (and even in fungal systems) due to the more
recent discovery of these enzymes and their fungal origin. The
latter aspects, to be overcome in the future, currently limit
enzyme engineering to tailor UPOs for specific substrates and
processes, as well as their production scale-up. UPOs have
been shown to catalyze a diversity of interesting oxygenation
reactions with aromatic substrates,15,16 aliphatic compounds,
such as fatty acids, alkanes, fatty alcohols,17−21 steroids, and
secosteroids,22−24 and other flavor and fragrance compounds,
such as isophorone.25 The first UPO was described in the
basidiomycetous fungus Agrocybe aegerita (AaeUPO),26 and
since then, several other UPO enzymes have been purified
from other Basidiomycota and Ascomycota species, such as
Coprinellus radians,27Marasmius rotula (MroUPO),28 and
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Chaetomium globosum (CglUPO),29 which are indicative of
their widespread occurrence in the fungal kingdom. In addition
to these wild-type (i.e., nonrecombinant) enzymes, there are
other UPOs, e.g., from Coprinopsis cinerea (rCciUPO)18 and
Humicola insolens (rHinUPO),29 which are only known as
recombinant proteins heterologously expressed by Novozymes
A/S (Bagsvaerd, Denmark) in the mold Aspergillus oryzae.30

Very recently, a new UPO from the ascomycetous mold
Daldinia caldariorum has become available from Novozymes,
after gene expression in A. oryzae, being also expressible in
Escherichia coli as a soluble and active enzyme.31

In the present work, the oxygenation of α- and β-ionones
and their respective isomers α- and β-damascones by several
UPOs is shown for the first time. These are new reactions of
interest for the biotechnological synthesis of different natural
flavors, pharmaceuticals, and synthetic building blocks to be
added to the existing portfolio of reactions catalyzed by these
exciting enzymes.14

■ MATERIALS AND METHODS
Enzymes. AaeUPO (isoform II), a wild UPO from cultures of A.

aegerita TM-A1 (syn. Cyclocybe aegerita, DSM 22459) grown in
soybean-peptone medium, was purified as previously described.26

MroUPO is another wild-type UPO, from cultures of M. rotula DSM-
25031 (German Collection of Microorganisms and Cell Cultures,
Braunschweig), which was purified as described by Gröbe et
al.28CglUPO, the third wild-type UPO originates from cultures of
C. globosum DSM-62110, which was purified as recently described.29

rCciUPO corresponds to the protein model 7249 from the sequenced
C. cinerea genome available at the JGI (http://genome.jgi.doe.gov/
Copci1). The recombinant enzymes rCciUPO (44 kDa), rHinUPO,
and rDcaUPO were provided by Novozymes A/S after expression in
A. oryzae.30 All UPO proteins were purified by fast protein liquid
chromatography (FPLC) using a combination of size exclusion
chromatography (SEC) and ion-exchange chromatography on
different anion and cation exchangers. Purification was confirmed
by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-
PAGE) and ultraviolet−visible (UV−vis) spectroscopy following the
characteristic heme-maximum around 420 nm (Soret band of resting-
state UPOs). Enzyme concentration was estimated according to the
characteristic UV−vis band of the reduced UPO complex (Fe2+-
heme) with carbon monoxide.32

Chemical Compounds. Ionones, rac-(3E)-4-(2,6,6-trimethyl-2-
cyclohexen-1-yl)-3-buten-2-one (also known as α-ionone) and (3E)-
4-(2,6,6-trimethyl-1-cyclohexen-1-yl)-3-buten-2-one (also known as
β-ionone), and damascones, rac-(2Z)-1-(2,6,6-trimethyl-2-cyclohex-
en-1-yl)-2-buten-1-one (also known as α-damascone) and (2E)-1-
(2,6,6-trimethyl-1-cyclohexen-1-yl)-2-buten-1-one (also known as β-
damascone) were tested as substrates of the above UPOs. All of the
compounds were purchased from Sigma-Aldrich except for α-ionone
that was supplied by Fluka.
Enzymatic Reactions. Reactions (1 mL volume) with ionones

and damascones (0.5 mM) were performed at 30 °C, in 50 mM
phosphate buffer, pH 7.0 (pH 5.5 in MroUPO reaction). The enzyme
concentration was 0.5 μM, and the H2O2 was added every 6 min in
doses of 0.5 μmol to a final concentration of 2.5 mM.25 In control
experiments, the substrates were treated under the same conditions
(including H2O2) but without the enzyme. The blank experiments did
not give any oxidation product. Samples, at 30 min reaction, were
extracted with ethyl acetate and directly analyzed by gas
chromatography−mass spectrometry (GC−MS). On the other
hand, a time-course experiment with all substrates and enzymes was
performed, and the corresponding samples within several reaction
times (5, 10, 15, and 20 min) were analyzed by GC−MS. In addition,
the samples were dried under N2 to prepare trimethylsilyl (TMS)
derivatives with N,O-bis(trimethylsilyl)trifluoroacetamide (Supelco)
that were also analyzed by GC−MS. Reactions with a higher substrate

concentration were also performed using 5 mM of β-ionone, 1 μM of
enzyme, and by adding H2O2 with a syringe pump over 6 h at 3 μmol
h−1. The total turnover number (TTN) (mol product × number of
conversions/mol enzyme) as well as the total turnover frequency
(TOF) (TTN/time) were calculated in these reactions.

GC−MS Analyses. The analyses of samples (with and without
silylation) were performed in a Shimadzu GC−MS QP 2010 Ultra
system, using a fused-silica DB-5HT capillary column (30 m × 0.25
mm internal diameter, 0.1 μm film thickness) from J&W Scientific.
The oven was heated from 50 °C (1.5 min) to 90 °C (2 min) at 30
°C min−1, and then from 90 to 250 °C (15 min) at 8 °C min−1. The
injection was performed at 250 °C, and the transfer line was kept at
300 °C. Compounds were identified by mass fragmentography and by
comparing their mass spectra with those of the Wiley and NIST
libraries, and those previously reported,3,4,7,9,10,33−35 and relative
quantification was obtained from the total-ion peak area, using
response factors of the same (in the case of substrates) or similar
compounds. The mass spectra and chemical structures of substrates
and their reaction products (underivatized and as TMS derivatives)
are included in the Supporting Information (Table S1).

■ RESULTS AND DISCUSSION
In the present work, several fungal UPOs, such as AaeUPO,
MroUPO, CglUPO, rCciUPO, rHinUPO, and rDcaUPO, were
tested for their ability to oxygenate apocarotenoids such as α-
ionone, β-ionone, α-damascone, and β-damascone (Figures
1−4), using H2O2 as a cosubstrate and an O donor. The

performance of enzymatic reactions was evaluated by GC−MS,
and the different activities and selectivities attained by the
UPOs are described and discussed in the following sections.

Reactions with α-Ionone. All UPOs were capable of
completely transforming α-ionone within 30 min reaction time,
except for rCciUPO that only reached 21% conversion under
these conditions (Table 1). The time course of the reactions
showed that rHinUPO and rDcaUPO completely converted
the substrate within 5 min, while AaeUPO, MroUPO, and
CglUPO needed 15−30 min (Figure 5A).
GC−MS analyses of enzymatic reactions revealed that all

enzymes selectively (86−98%) oxygenated α-ionone at C-3

Figure 1. α-Ionone (α-I) oxygenation by UPOs, showing 3-hydroxy-
α-ionone (3-OH-α-I) and 3-oxo-α-ionone (3-CO-α-I) formed via a
gem-diol intermediate, its tautomer 3-hydroxy-2,3-didehydro-α-
ionone (3-OH-2,3-DH-α-I) and 4-epoxy-α-ionone (4-epoxy-α-I).
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(allylic position) producing 3-hydroxy-α-ionone (3-OH-α-I)
and 3-oxo-α-ionone (3-CO-α-I) (Table 1, Figures 1 and S1).
In addition to these derivatives, the tautomer of the keto
derivative, 3-hydroxy-2,3-didehydro-α-ionone (3-OH-2,3-DH-
α-I) (7%), was observed in rHinUPO reactions. Small amounts
(1−14%) of 4-epoxy-α-ionone (4-epoxy-α-I) were also
detected in all reactions. The mass spectra of these compounds
(Table S1) were in agreement with those published in the
NIST library and the literature.7,9,10

Different proportions of both cis-3-OH-α-I and trans-3-OH-
α-I isomers were observed in the reactions with the different

UPOs, the trans-diastereoisomer being generally the most
abundant, except in AaeUPO reactions where the proportion
of both isomers was similar (Figures 6A and S1) after 30 min.
The higher proportion of the trans-diastereoisomer may be
attributed to the faster further oxygenation of the cis-
diastereoisomer by these enzymes via a gem-diol intermediate
that is in equilibrium with the corresponding keto derivative
(Figure 1),17 although an enzymatic preference for hydrox-

Figure 2. β-Ionone (β-I) oxygenation by UPOs showing the different oxygenated derivatives: 4-hydroxy-β-ionone (4-OH-β-I), 3-hydroxy-β-ionone
(3-OH-β-I), 2-hydroxy-β-ionone (2-OH-β-I), 10-hydroxy-β-ionone (10-OH-β-I), 13-hydroxy-β-ionone (13-OH-β-I), 4-oxo-β-ionone (4-CO-β-
I), 2-oxo-β-ionone (2-CO-β-I), 7,11-epoxymegastigma-5(6)-en-9-one (EME), and 4-hydroxy-7,11-epoxymegastigma-5(6)-en-9-one (4-OH-EME).

Figure 3. α-Damascone (α-D) oxygenation by UPOs, showing 3-
hydroxy-α-damascone (3-OH-α-D), 10-hydroxy-α-damascone (10-
OH-α-D), 4-epoxy-α-damascone (4-epoxy-α-D), 3-oxo-α-damascone
(3-CO-α-D), 4-oxo-4-(2,6,6-trimethylcyclohex-2-en-1-yl)but-2-enal
(10-CHO-α-D), and 4-oxo-4-(2,6,6-trimethylcyclohex-2-en-1-yl)but-
2-enoic acid (10-COOH-α-D) derivatives.

Figure 4. β-Damascone (β-D) oxygenation by UPOs showing 3-
hydroxy-β-damascone (3-OH-β-D), 4-hydroxy-β-damascone (4-OH-
β-D), and 10-hydroxy-β-damascone (10-OH-β-D), and the over-
oxygenated compounds 4-oxo-β-damascone (4-CO-β-D), 4-oxo-4-
(2,6,6-trimethylcyclohex-1-en-1-yl)but-2-enal (10-CHO-β-D), and 4-
oxo-4-(2,6,6-trimethylcyclohex-1-en-1-yl)but-2-enoic acid (10-
COOH-β-D).
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ylation of α-ionone to the corresponding cis or trans
diastereomers may not be discarded.
Interestingly, all UPOs were able to over-oxygenate 3-OH-

α-I to form 3-CO-α-I (via the gem-diol), except for AaeUPO
that only formed 5% of the latter compound (Table 1). The
low over-oxygenating activity of AaeUPO for hydroxy
derivatives was also observed in the hydroxylation of the
related α-isophorone.25 The contrary was observed in
rHinUPO reactions, in which 3-CO-α-I was the predominant
product and the OH-tautomer was also observed. The reason
why the enol form was only found in rHinUPO reactions may
be due to the high amount of the keto-form in these reactions.
With other UPOs, the lower amount of 3-CO-α-I formed may
be the reason for the OH-tautomer to be below the detection
limit.
Similar oxygenated derivatives were reported for fungi-

mediated biotransformation of α-ionone, although generally
with lower substrate conversion rates.3,5,7 On the other hand,
the biotransformation of α-ionone catalyzed by P450
CYP109D1 showed the regioselective formation of 3-OH-α-
I.9 The selectivity found here for most UPOs is similar to that

reported for cytochrome CYP101B1, where the trans-
diastereoisomer was preferentially obtained (66%).10

Reactions with β-Ionone. All UPOs were able to
completely convert β-ionone under the same conditions within
30 min of reaction, except for rCciUPO that only reached 41%
conversion (Table 2). Time courses of the reactions show
similar conversion degrees as those observed with α-ionone for
the different UPOs, with the exception of AaeUPO, which
achieved almost complete substrate conversion within just 5
min (Figure 5B). On the other hand, different regioselectivities
were noticed for the different UPOs tested, and oxygenation
occurred at different positions (Table 2, Figures 2 and S2).
CglUPO and rHinUPO were most selective (around 80%
regioselectivity) toward the C-4 position, resulting in the
formation of 4-hydroxy-β-ionone (4-OH-β-I) and its over-
oxygenated (via a gem-diol intermediate) derivative 4-oxo-β-
ionone (4-CO-β-I). All UPOs oxygenated, in addition to C-4,
other ring positions (C-2 and C-3), although to a lesser extent.
These compounds were tentatively identified by MS, and their
mass spectra (Table S1) matched with those published in the
NIST library and literature.9,10,12,35,36 Moreover, other

Table 1. Conversion (Percentage of Substrate Transformed) of α-Ionone (α-I) by Several UPOs (30 min) and Abundance
(Relative Percentage) of the Reaction Products, Including Hydroxy (OH), Keto (CO), and Epoxy Derivatives

AaeUPO MroUPO rCciUPO CglUPO rHinUPO rDcaUPO

conversion (%) >99 >99 21 >99 >99 >99
products (%)
3-OH-α-I 93 55 63 72 1 45
3-CO-α-I 5 31 35 22 98a 53
4-epoxy-α-I 2 14 2 6 1 2

aIncluding the keto derivative (91%) and its tautomer 3-hydroxy-2,3-didehydro-α-ionone (7%).

Figure 5. Time course of the transformation of 0.5 mM α-ionone (A), β-ionone (B), α-damascone (C), and β-damascone (D) by 0.5 μM AaeUPO
(purple), MroUPO (yellow), rCciUPO (light blue), CglUPO (green), rHinUPO (red), and rDcaUPO (blue). The standard deviations (SD)
calculated for duplicates (at 30 min) are indicated.

Journal of Agricultural and Food Chemistry pubs.acs.org/JAFC Article

https://dx.doi.org/10.1021/acs.jafc.0c01019
J. Agric. Food Chem. 2020, 68, 5375−5383

5378

http://pubs.acs.org/doi/suppl/10.1021/acs.jafc.0c01019/suppl_file/jf0c01019_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jafc.0c01019/suppl_file/jf0c01019_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jafc.0c01019?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jafc.0c01019?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jafc.0c01019?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jafc.0c01019?fig=fig5&ref=pdf
pubs.acs.org/JAFC?ref=pdf
https://dx.doi.org/10.1021/acs.jafc.0c01019?ref=pdf


hydroxylated derivatives resulting from a second and third
oxygenation step (dihydroxy and/or hydroxy-keto derivatives,
Figures S2 and S3) were also detected in almost all reactions.
Only in the case of rCciUPO, the oxygenation of the

terminal C-10 position in the side chain (10-hydroxy-β-ionone,
10-OH-β-I) was observed (Figure S2C). The position of the
hydroxyl group was determined by the mass spectrum of the
TMS derivative that showed a major peak at m/z 177

corresponding to the loss of the terminal hydroxyl group
(Figure S4A). This compound was only evidenced in the
silylated sample. To the best of our knowledge, the occurrence
of this oxygenated derivative has not been reported so far. The
terminal oxygenation of side chains of other aliphatic cyclic
compounds by UPOs has been described for steroids,
secosteroids, and trans-β-methylstyrene.22,23,37

On the other hand, the presence of 7,11-epoxymegastigma-
5(6)-en-9-one (EME) and its hydroxylated derivative 4-
hydroxy-7,11-epoxymegastigma-5(6)-en-9-one (4-OH-EME)
was only observed in the reaction with rDcaUPO (Figures 2
and S2F), and to the best of our knowledge, not reported so far
for P450s or microbial cultures. This unusual bicyclic ionone
derivative would be formed by the oxygenation of the C-13,
followed by ring closure between positions 7 and 13 of the
ionone framework as reported for the chemical synthesis of
EME (in several steps) starting from racemic γ-ionone
epoxidation.33 The presence of the hydroxylated derivative of
β-ionone at C-13 (Figures S2F and S4B) supports this
mechanism. Moreover, the absence of the dihydroxylated
derivative of β-ionone at C-4 and C-13 suggests that 4-OH-
EME is not formed from 4-hydroxy-β-ionone although this
could not be absolutely discarded.
Finally, reactions with higher substrate (5 mM) and enzyme

(1 μM) loading were also performed, in which the cosubstrate
H2O2 was continuously supplied over 6 h with a syringe pump
to preserve the enzyme stability (that is decreased by high local
concentrations of peroxide). Under these conditions, nearly
complete substrate conversion (except with rDcaUPO) and
slightly increased selectivity were achieved, taking into account
that five times less enzyme/substrate ratio was used. This way,
the total turnover numbers of 1700−6200 were reached (Table
3).

Reactions with α-Damascone. All UPOs tested trans-
formed the substrate to great extents (88−100%) within 30
min, except for rCciUPO that only accomplished 11%
conversion under the same conditions (Table 4). The time
course of the reaction showed that rHinUPO and rDcaUPO
were more efficient than the other UPOs since they completely
transformed the substrate within 5 min of the reaction (Figure
5C).
All UPOs (except for rCciUPO) oxygenated the C-3

position to produce 3-hydroxy-α-damascone (3-OH-α-D)
(Table 4, Figures 3 and S5). In a similar way as in the

Figure 6. Abundance (relative percentage) and chemical structures
(relative configuration) of the different diastereoisomers formed in
the reactions at 5 and 30 min of α-ionone (A) and α-damascone (B)
with several UPOs. The standard deviations (SD) calculated for
duplicates (at 30 min) are indicated.

Table 2. Conversion (Percentage of Substrate Transformed) of β-lonone (β-I) by Several UPOs (30 min) and Abundance
(Relative Percentage) of the Reaction Products, Including Hydroxy (OH) and Keto (CO) Derivatives, and/or 7,11-
Epoxymegastigma-5(6)-en-9-one (EME), and Dihydroxy or Hydroxy-Keto Derivatives of β-I (Others)

AaeUPO MroUPO rCciUPO CglUPO rHinUPO rDcaUPO

conversion (%) >99 >99 41 >99 >99 >99
products (%)
4-OH-β-I 55 55 61 64 21 53
3-OH-β-I 22 19 19
2-OH-β-I 13 7 2 1 3
10-OH-β-I 14
13-OH-β-I 7
EME 11
2-CO-β-I 18
4-CO-β-I 3 1 2 20 58
4-OH-EME 5
others 7 19 2 15 21 2
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reactions with α-ionone, the hydroxylation of α-damascone by
several UPOs yielded both diastereoisomers, cis-3-OH-α-D
and trans-3-OH-α-D, whose mass spectra were in accordance
with those previously reported.4 MroUPO, CglUPO, rDcaU-
PO, and rHinUPO were more selective, giving principally the
trans-diastereoisomer, while AaeUPO mainly produced the cis-
diastereoisomer (Figure 6B). In addition, CglUPO, rHinUPO,
and rDcaUPO over-oxygenated 3-OH-α-D to the 3-oxo
derivative, and most UPOs (MroUPO, CglUPO, rDcaUPO,
and rHinUPO) formed 4-epoxy-α-damascone (4-epoxy-α-D)
as well, although in minor amounts. Again, similar products
were obtained in fungi-mediated biotransformation of α-
damascone but with lower conversion rates, maybe due to the
toxicity of these compounds to fungal cultures.3

Interestingly, in addition to ring oxygenation, AaeUPO,
MroUPO, and rCciUPO oxygenated the terminal position of
the side chain (Figure 3) being the predominant reaction (80%
of the total products) for the former UPO (Table 4 and Figure
S5). In these reactions, the formation of the terminal alcohol
(10-hydroxy-α-damascone, 10-OH-α-D) was followed by its
over-oxygenation, producing the corresponding aldehyde (4-
oxo-4-(2,6,6-trimethylcyclohex-2-en-1-yl)but-2-enal, 10-CHO-
α-D) and the carboxylic acid (4-oxo-4-(2,6,6-trimethylcyclo-

hex-2-en-1-yl)but-2-enoic acid, 10-COOH-α-D). These com-
pounds were tentatively identified by the mass spectra of their
TMS derivatives (Figure S6). The spectra show the molecular
ions at m/z 280 (10-OH-α-D), m/z 206 (10-CHO-α-D), and
m/z 294 (10-COOH-α-D) as well as the fragments
corresponding to the loss of a methyl group [M−CH3]

+ at
m/z 265, 191, and 279, respectively, and the fragment at m/z
123 from the intact ring moiety. Additionally, diagnostic
fragments at m/z 157, corresponding to the side chain
butenoyl group in 10-OH-α-D (Figure S6A), and at m/z
177 due to the loss of the aldehyde group [M−CHO]+ (Figure
S6B) are also observed. To the best of our knowledge, such
damascone derivatives at C-10 have not been reported so far.
This may be due to the fact that most authors analyzed these
compounds without derivatization, and we found that they can
only be detected after derivatization (silylation).

Reactions with β-Damascone. Among all UPOs tested,
only CglUPO and rHinUPO completely converted β-
damascone within 30 min, while AaeUPO, MroUPO, and
rDcaUPO attained conversions of 81, 72, and 34%,
respectively, under the same conditions, and rCciUPO was
practically incapable of oxidizing it (Table 5 and Figures 4, S7).
Noteworthy is the low conversion of this compound by

Table 3. Conversion (Percentage of Substrate Transformed), Abundance (Relative Percentage) of Reaction Products,
Including Hydroxy (OH), Keto (CO), and Dihydroxy or Hydroxy-Keto Derivatives (others), Total Turnover Number (TTN),
and Total Turnover Frequency (TOF) in the Enzymatic Transformation of 5 mM β-Ionone (β-I)

AaeUPO MroUPO rCciUPO CglUPO rHinUPO rDcaUPO

conversion (%) 95 93 22 98 91 52
products (%)
4-OH-β-I 87 67 83 70 57 54
4-CO-β-I 13 24 24
others 13 20 17 6 19 46
TTN 5200 5900 1700 6200 6000 2800
TOF (min−1) 14 16 5 17 17 8

Table 4. Conversion (Percentage of Substrate Transformed) of α-Damascone (α-D) by Several UPOs (30 min) and
Abundance (Relative Percentage) of the Reaction Products, Including Hydroxy (OH), Aldehyde (CHO), Keto (CO), Carboxy
(COOH), and Epoxy Derivatives

AaeUPO MroUPO rCciUPO CglUPO rHinUPO rDcaUPO

conversion (%) >99 88 11 >99 >99 >99
products (%)
3-OH-α-D 18 55 68 27 83
4-epoxy-α-D 6 16 3 4
10-OH-α-D 6 41
3-CO-α-D 16 70 13
10-CHO-α-D 2 14 52
10-COOH-α-D 80 19 7

Table 5. Conversion (Percentage of Substrate Transformed) of β-Damascone (β-D) by Several UPOs (30 min) and
Abundance (Relative Percentage) of the Reaction Products, Including Hydroxy (OH), Aldehyde (CHO), Keto (CO), Carboxy
(COOH), and Epoxy Derivatives

AaeUPO MroUPO rCciUPO CglUPO rHinUPO rDcaUPO

conversion (%) 81 72 1 >99 >99 34
products (%)
3-OH-β-D 32 8 6 5 24
4-OH-β-D 9 46 88 53 71
10-OH-β-D 3 6 >99 5
4-CO-β-D 6 42
10-CHO-β-D 8 17
10-COOH-β-D 48 23
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rDcaUPO compared to the other substrates tested. The time
course of the reaction showed that rHinUPO was more
efficient than the other UPOs since it completely transformed
the substrate within 5 min (Figure 5D).
In most cases, the hydroxylation at the C-4 position was

dominant over that at the C-3 position, with the exception of
AaeUPO. On the other hand, rHinUPO and, to a minor extent,
CglUPO were the only enzymes that over-oxygenated the 4-
OH-β-D to 4-oxo-β-damascone (4-CO-β-D) (Figures S7D
and S7E). The mass spectra of these compounds (Table S1)
are in agreement with those previously reported.3,34,36 On the
other hand, as in α-damascone reactions, oxygenated
derivatives (alcohol, aldehyde, and carboxylic acid) at C-10
were also formed (Figure 4), preferentially by AaeUPO and
MroUPO (Figure S7). These compounds were identified by
the mass spectra of their TMS derivatives (Figure S8), which
showed characteristic fragments similar to those of α-
damascone derivatives, as the molecular ions at m/z 280
(10-OH-β-D), m/z 206 (10-CHO-β-D), and m/z 294 (10-
COOH-β-D) and the fragments corresponding to the loss of a
methyl group [M−CH3]

+ at m/z 265, 191, and 279,
respectively. Likewise, the fragment at m/z 177 originated by
the loss of the aldehyde group [M−CHO]+ (Figure S8B) is
also observed.
Comparison of Oxygenation Patterns by Different

UPOs. Generally, all UPOs accomplished high conversion
rates for all substrates tested, except for rCciUPO. rHinUPO
and rDcaUPO were the most efficient ones (that converted
more substrates in less time under the same conditions) in
oxidizing all substrates tested (with the exception of β-
damascone that was only moderately converted by rDcaUPO)
(Figure 5). On the other hand, AaeUPO showed higher
efficiency with β-ionone than with any other substrate.
Regarding selectivity of the reactions with ionones, all UPOs

showed higher regioselectivities (up to 99%) with α-ionone
than with β-ionone (Tables 1 and 2). Although α- and β-
ionones differ only in the position of the cyclohexene double
bond, UPOs realized different reactivities toward them.
Analyses of the different oxygenation products formed by the
UPOs revealed that the position of the double bond in the
cyclohexenyl ring had seemingly an effect on the regioselec-
tivity of hydroxylation, directing it toward the allylic position.
In this sense, α- and β-ionone were mainly hydroxylated by
most UPOs at C-3 and C-4 to form 3-hydroxy-α-ionone and 4-
hydroxy-β-ionone, respectively. However, this effect was more
pronounced with α-ionone since several oxygenated derivatives
at other positions (C-2 and C-3) of the ring (or in the side
chain) were formed with β-ionone. The opposite was reported
for P450 BM-3 mutants that selectively produced 4-OH-β-I,
while they contrarily oxidized α-ionone to a mixture of four
products.12 Interestingly, rHinUPO was the UPO that most
pronouncedly oxygenated monohydroxyl derivatives further
into the corresponding keto derivatives (that are in equilibrium
with the gem-diol counterparts formed first). On the other
hand, most of the tested UPOs left the C-13 methyl group of
both α- and β-ionone unaffected. Only in the reaction with
rDcaUPO, the hydroxylation of the C-13 carbon atom of β-
ionone was observed, producing the interesting EME and 4-
OH-EME products.
The preference for the hydroxylation of the allylic position

in the cyclohexene ring by UPOs was also observed in the
reactions with α- and β-damascones. A strict regioselectivity
for this position was especially evident in the reaction of α-

damascone with rHinUPO and rDcaUPO, followed by
CglUPO, and in the reaction of β-damascone with rHinUPO
and CglUPO. Interestingly, in damascones reactions, different
regioselectivities with respect to that observed with ionones
were ascertained. Therefore, in addition to the cyclohexenyl
ring, hydroxylation was produced at the terminal position of
the butenoyl side chain, being predominant in AaeUPO
reactions but completely absent in rHinUPO, rDcaUPO, and
CglUPO reactions. Thus, the change in the position of the
carbonyl and alkene moieties in the butenoyl side chain caused
a drastic change in the regioselectivity of AaeUPO toward
damascones compared to ionones.
It can be concluded that the oxyfunctionalization of the

ionone and damascone isomers catalyzed by UPOs reveal clear
advantages over P450 catalysis (e.g., engineered P450 BM-3
variants) due to the higher conversion rates, enzyme stabilities,
and little requirements concerning cofactors. These enzymes
can therefore be of high interest for the production of valuable
compounds of interest for the flavor and fragrance, cosmetic
and pharmaceutical industries. However, it is necessary to
mention that some current limitations of UPOs, related to
their large-scale production and application, still need to be
solved for their efficient industrial implementation.
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the resveratrol analogue 4,4′-dihydroxy-trans-stilbene and stilbenoids
modification by fungal peroxygenases. Catal. Sci. Technol. 2018, 8,
2394−2401.
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Table S1. Chemical structures and mass fragmentations of ionones and damascones (α 

and β) and their oxygenated derivatives (with and without silylation)  from enzymatic 

reactions with several UPOs 

 UPOs Structure GC-MS (m/z) 

-ionone 

(-I) 

AaeUPO, MroUPO, 
rCciUPO, CglUPO, 
rHinUPO, rDcaUPO 

                       

192 [M+], 177 [M-CH3]+, 
159 (2), 149 (6), 136 
(46), 121 (100), 109 
(26), 93 (89), 91 (28), 
77 (14), 65 (5). 

3-hydroxy--ionone 

(3-OH--I) 

AaeUPO, MroUPO, 
rCciUPO, CglUPO, 

rDcaUPO 

      

208 [M+], 193 [M-CH3]+, 
175 (4), 165 (2), 152 
(10), 137 (12), 125 
(22), 109 (100), 91 
(18), 81 (23). 

3-hydroxy--ionone (TMS) 

(3-OH--I) 

AaeUPO, MroUPO, 
rCciUPO, CglUPO, 

rDcaUPO 

 

280 [M+], 265 [M-CH3]+, 
195 (46), 181 (14), 165 
(5), 141 (100), 109 
(15), 73 (43), 55 (5). 

3-oxo--ionone 

(3-CO--I) 

AaeUPO, MroUPO, 
rCciUPO, CglUPO, 
rHinUPO, rDcaUPO 

       

206 [M+], 191 [M-CH3]+, 
150 (12), 108 (100), 79 
(8). 

3-hydroxy-2,3-dehydro--ionone 

(3-OH-2,3-DH--I) 
rHinUPO 

     

206 [M+], 191 [M-CH3]+, 
163 (100), 149 (21), 
135 (30), 12 (55), 105 
(28), 93 (38), 77 (10), 
55 (20). 

3-hydroxy-2,3-dehydro--ionone 
(TMS) 

(3-OH-2,3-DH--I) 

rHinUPO 

 

278 [M+], 263 [M-CH3]+, 
207 (48), 179 (56), 165 
(30), 141 (85), 105 
(25), 73 (100). 

4-epoxy--ionone 

(4-epoxy--I) 

AaeUPO, MroUPO, 
rCciUPO, CglUPO, 
rHinUPO, rDcaUPO 

                

208 [M+], 193 [M-CH3]+, 
175 (3), 165 (16), 151 
(18), 123 (13), 109 
(100), 95 (68). 

-ionone 

(-I) 

AaeUPO, MroUPO, 
rCciUPO, CglUPO, 
rHinUPO, rDcaUPO               

192 [M+], 177 [M-CH3]+, 
162 (5), 149 (6), 135 
(12), 123 (13), 107 
(11), 93 (13). 

4-hydroxy--ionone 

(4-OH--I) 

AaeUPO, MroUPO, 
rCciUPO, CglUPO, 
rHinUPO, rDcaUPO 

              

208 [M+], 193 [M-CH3]+, 
175 (8), 165 (10), 151 
(10), 137 (17), 123 
(25), 109 (100), 95 
(20), 91 (21). 

4-hydroxy--ionone (TMS) 

(4-OH--I) 

AaeUPO, MroUPO, 
rCciUPO, CglUPO, 
rHinUPO, rDcaUPO 

              

280 [M+], 265 [M-CH3]+, 
237 (18), 209 (24), 181 
(100), 165 (56), 134 
(24), 109 (25), 91 (18), 
73 (87), 55 (5). 

O

O

HO

O

TMSO

O

O

O

HO

O

TMSO

O

O

O

O

OH

O

OTMS



3-hydroxy--ionone 

(3-OH--I) 

AaeUPO, rCciUPO, 
rDcaUPO 

    

208 [M+], 193 [M-CH3]+, 
175 (25), 157 (8), 147 
(9), 109 (46), 91 (29). 

3-hydroxy--ionone (TMS) 

(3-OH--I) 

AaeUPO, rCciUPO, 
rDcaUPO 

 

280 [M+], 265 [M-CH3]+, 
209 (10), 181 (22), 175 
(14), 149 (28), 121 
(100), 105 (20), 91 (8), 
73 (7), 55 (3). 

2-hydroxy--ionone 

(2-OH--I) 

AaeUPO, MroUPO, 
rCciUPO, CglUPO, 

rDcaUPO 
    

208 [M+], 193 [M-CH3]+, 
175 (66), 149 (35), 121 
(43), 105 (59), 91 (43), 
81 (23). 

2-hydroxy--ionone (TMS) 

(2-OH--I) 

AaeUPO, MroUPO, 
rCciUPO, CglUPO, 

rDcaUPO 
 

280 [M+], 265 [M-CH3]+, 
237 (2), 190 (10), 175 
(40), 149 (33), 121 
(100), 105 (28), 91 
(12), 73 (7), 55 (5). 

10-hydroxy--ionone (TMS) 

(10-OH--I) 
rCciUPO 

 

280 [M+], 265 [M-CH3]+, 
177 (100), 135 (30), 
119 (30), 103 (24), 91 
(20), 73 (42), 55 (8). 

13-hydroxy--ionone 

(13-OH--I) 
rDcaUPO 

              

208 [M+], 193 [M-CH3]+, 
177 (33), 163 (100), 
107 (79), 91 (66), 55 
(52). 

13-hydroxy--ionone (TMS) 

(13-OH--I) 
rDcaUPO 

                

280 [M+], 265 [M-CH3]+, 
237 (26), 177 (37), 147 
(100), 133 (30), 119 
(32), 105 (46), 73 (72), 
55 (8). 

7,11-epoxymegastigma-5(6)-en-
9-one 
(EME) 

rDcaUPO 

             

208 [M+], 193 [M-CH3]+, 
165 (5), 150 (93), 135 
(100), 123 (17), 107 
(39), 95 (40), 81 (52). 

2-oxo--ionone 

(2-CO--I) 
MroUPO 

       

206 [M+], 191 [M-CH3]+, 
163 (32), 149 (52), 135 
(31), 121 (100), 105 
(64), 93 (42). 

4-oxo--ionone 

(4-CO--I) 

AaeUPO, MroUPO, 
rCciUPO, CglUPO, 

rHinUPO 

               

206 [M+], 191 [M-CH3]+, 
177 (4), 163 (100), 150 
(18), 135 (30), 121 
(56), 105 (27), 91 (37), 
77 (15), 65 (13), 55 
(21). 

4-hydroxy-7,11-
epoxymegastigma-5(6)-en-9-one 
(TMS) 
(4-OH-EME) 

rDcaUPO 

              

296 [M+], 281 [M-CH3]+, 
238 (60), 206 (48), 195 
(42), 163 (30), 149 
(66), 121 (39), 105 
(31), 91 (20), 73 (100). 

Polihydroxy derivatives 
(HD) 

AaeUPO, MroUPO, 
rCciUPO, CglUPO, 
rHinUPO, rDcaUPO 

See Figure S3  
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-damascone 

(-D) 

AaeUPO, MroUPO, 
rCciUPO, CglUPO, 
rHinUPO, rDcaUPO 

              

192 [M+], 123 [M-CH3]+, 
123 (19), 91 (5), 69 
(100), 57 (5). 

4-epoxy--damascone 

(4-epoxy--D) 

MroUPO, CglUPO, 
rHinUPO, rDcaUPO 

              

208 [M+], 193 [M-CH3]+, 
175 (2), 152 (10), 137 
(74), 125 (11), 109 
(28), 95, (30), 81 (15), 
69 (100), 55 (20). 

3-hydroxy--damascone 

(3-OH--D) 

AaeUPO, MroUPO, 
CglUPO, rDcaUPO 

    

208 [M+], 193 [M-CH3]+, 
151 (26), 123 (18), 109 
(35), 107 (82), 91 (15), 
69 (100), 55 (10). 

3-hydroxy--damascone (TMS) 

(3-OH--D) 

AaeUPO, MroUPO, 
CglUPO, rDcaUPO 

 

280 [M+], 265 [M-CH3]+, 
209 (8), 181 (6), 165 
(5), 107 (100), 91 (10), 
73 (54), 69 (68), 55 (2). 

10-hydroxy--damascone (TMS) 

(10-OH--D) 
MroUPO, rCciUPO 

 

280 [M+], 265 [M-CH3]+, 
209 (6), 177 (8), 157 
(55), 123 (10), 81 (21), 
73 (100), 55 (4). 

3-oxo--damascone 

(3-CO--D) 

CglUPO, rHinUPO, 
rDcaUPO 

       

206 [M+], 191 [M-CH3]+, 
137 (24), 123 (21), 69 
(100). 

4-oxo-4-(2,6,6-trimethylcyclohex-
2-en-1-yl)but-2-enal 

(10-CHO--D) 

AaeUPO, MroUPO, 
rCciUPO 

 

206 [M+], 191 [M-CH3]+, 
177 (6), 150 (5), 123 
(100), 107 (27), 81 
(86), 55 (18). 

4-oxo-4-(2,6,6-trimethylcyclohex-
2-en-1-yl)but-2-enoic acid (TMS) 

(10-COOH--D) 

AaeUPO, MroUPO, 
rCciUPO 

 

294 [M+], 279 [M-CH3]+, 
251 (14), 195 (11), 172 
(24), 123 (100), 81 
(54), 73 (23), 57 (11). 

-damascone 

(-D) 

AaeUPO, MroUPO, 
rCciUPO, CglUPO, 
rHinUPO, rDcaUPO 

              

192 [M+], 177 [M-CH3]+, 
123 (41), 107 (39), 93 
(17), 81 (40), 69 (63). 

3-hydroxy--damascone 

(3-OH--D) 

AaeUPO, MroUPO, 
CglUPO, rHinUPO, 

rDcaUPO 

    

208 [M+], 193 [M-CH3]+, 
175 (42), 149 (30), 121 
(68), 105 (48), 93 (30), 
79 (23), 69 (100), 55 
(38). 

3-hydroxy--damascone (TMS) 

(3-OH--D) 

AaeUPO, MroUPO, 
CglUPO, rHinUPO, 

rDcaUPO 

 

280 [M+], 265 [M-CH3]+, 
237 (1), 209 (5), 190 
(12), 175 (34), 164 
(100), 149 (84), 136 
(28), 121 (89), 91 (12), 
73 (45), 69 (72), 55 
(10). 
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4-hydroxy--damascone 

(4-OH--D) 

AaeUPO, MroUPO, 
CglUPO, rHinUPO, 

rDcaUPO 

               

208 [M+], 193 [M-CH3]+, 
175 (15), 152 (12), 139 
(100), 123 (18), 109 
(25), 95 (29), 79 (14), 
69 (90), 55 (24). 

4-hydroxy--damascone (TMS) 

(4-OH--D) 

AaeUPO, MroUPO, 
CglUPO, rHinUPO, 

rDcaUPO 

              

280 [M+], 265 [M-CH3]+, 
237 (1), 211 (100), 190 
(8), 175 (5), 121 (10),  
105 (8), 91 (7), 73 (90), 
69 (40), 55 (3). 

10-hydroxy--damascone (TMS) 

(10-OH--D) 

AaeUPO, MroUPO, 
rCciUPO, rDcaUPO 

 

280 [M+], 265 [M-CH3]+, 
190 (80), 175 (94), 162 
(22), 147 (48), 133 
(28), 123 (79), 107 
(62), 81 (50), 73 (100), 
55 (24). 

4-oxo--damascone 

(4-CO--D) 
CglUPO, rHinUPO 

               

206 [M+], 191 [M-CH3]+, 
173 (2), 163 (8), 150 
(6), 123 (10), 109 (6), 
91 (5), 69 (100), 55 (6). 

4-oxo-4-(2,6,6-trimethylcyclohex-
1-en-1-yl)but-2-enal 

(10-CHO--D) 

AaeUPO, MroUPO, 

 

206 [M+], 191 [M-CH3]+, 
177 (73), 163 (20), 145 
(24), 123 (76), 107 
(100), 81 (70), 55 (49). 

4-oxo-4-(2,6,6-trimethylcyclohex-
1-en-1-yl)but-2-enoic acid (TMS) 

(10-COOH--D) 

AaeUPO, MroUPO, 

 

294 [M+], 279 [M-CH3]+, 
251 (18), 204 (63), 189 
(24), 177 (67), 161 
(72), 123 (85), 107 
(46), 81 (42), 73 (100), 
55 (18). 
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Figure S1. GC-MS analyses of silylated sample of 0.5 mM -ionone (-I) reactions (30 

min) with 0.5 M AaeUPO (A), MroUPO (B), rCciUPO (C), CglUPO (D), rHinUPO (E) 

and rDcaUPO (F), showing hydroxy (OH), keto (CO) and epoxy derivatives of -I, 

including tautomer of keto derivative (3-hydroxy-2,3-didehydro--I), and remaining 

substrate (underlined).  

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S2. GC-MS analyses of silylated sample of 0.5 mM -ionone (-I) reactions (30 

min) with 0.5 M AaeUPO (A), MroUPO (B), rCciUPO (C), CglUPO (D), rHinUPO (E) 

and rDcaUPO (F), showing hydroxy (OH) and keto (CO) derivatives, and/or 7,11-

epoxymegastigma-5(6)-en-9-one (EME), and dihydroxy or hydroxy-keto derivatives of  -

I and remaining substrate (underlined).  

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S3. Chemical structures of the dihydroxy and keto-hydroxy-derivatives obtained in 

the UPO reactions with -ionone: 3-hydroxy-4-keto--ionone (1), 2-hydroxy-4-keto--

ionone (2), 4-hydroxy-2-keto--ionone (3), 4-hydroxy-3-keto--ionone (4), cis-3,4-

dihydroxy--ionone (5,6), cis-2,4-dihydroxy--ionone (7,8), trans-3,4-dihydroxy--

ionone, and trans-2,4-dihydroxy--ionone (11,12).  

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S4.  Mass spectra and formulae/fragmentations of 10-hydroxy--ionone (A) and 

13-hydroxy--ionone (B) as trimethylsilyl (TMS) derivatives from reaction of -ionone 

with rCciUPO. 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S5. GC-MS analyses of silylated sample of 0.5 mM -damascone (-D) reactions 

(30 min) with 0.5 M AaeUPO (A), MroUPO (B), rCciUPO (C), CglUPO (D), rHinUPO 

(E) and rDcaUPO (F), showing hydroxy (OH), aldehyde (CHO), keto (CO), carboxy 

(COOH) and epoxy derivatives, and remaining substrate (underlined).  

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S6. Mass spectra and formulae/fragmentations of 10-hydroxy--damascone (A), 4-

oxo-4-(2,6,6-trimethylcyclohex-2-en-1-yl)but-2-enal (B) and 4-oxo-4-(2,6,6-

trimethylcyclohex-2-en-1-yl)but-2-enoic acid (C) as trimethylsilyl (TMS) derivatives (A 

and C) from reactions of -damascone with several UPOs. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S7. GC-MS analyses of silylated sample of 0.5 mM -damascone (-D) reactions 

(30 min) with 0.5 M AaeUPO (A), MroUPO (B), rCciUPO (C), CglUPO (D), rHinUPO 

(E) and rDcaUPO (F), showing hydroxy (OH), aldehyde (CHO), keto (CO), carboxy 

(COOH) and epoxy derivatives, and remaining substrate (underlined).  

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S8.  Mass spectra and formulae/fragmentations of 10-hydroxy-β-damascone (A), 4-

oxo-4-(2,6,6-trimethylcyclohex-1-en-1-yl)but-2-enal (B) and 4-oxo-4-(2,6,6-

trimethylcyclohex-1-en-1-yl)but-2-enoic acid (C) as trimethylsilyl (TMS) derivatives (A 

and C) from reactions of  β-damascone with several UPOs. 
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