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ABSTRACT: The structural characteristics of the lignins from flax (Linum usitatissimum) fibers and shives were studied. Significant
differences in the content and composition of the lignin from both parts were observed. The lignin contents were 3.8% in the fibers
and 29.0% in the shives. Analysis by Py-GC/MS indicated aH:G:Smolar ratio of 13:72:15 in themilled wood lignin (MWL) isolated
from flax fibers and a molar ratio of 5:87:8 in the MWL isolated from flax shives. In addition, 2D-NMR showed a predominance of
β-O-40 aryl ether linkages, followed by β-50 phenylcoumaran and β-β0 resinol-type linkages in both MWLs, with a higher content of
condensed linkages in flax shives. Thioacidolysis (followed by Raney nickel desulfurization) gave further information on the lignin
units involved in the different linkages and confirmed the enrichment of G units. The thioacidolysis dimers released were similar
from both lignins, with a predominance of the β-50 followed by β-10 and 5-50 structures.
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’ INTRODUCTION

There is a growing need to consider alternative agricultural
strategies that move an agricultural industry focused on food
production to one that also supplies the needs of other industrial
sectors, such as paper, textiles, biofuels, or added-value che-
micals.1,2 Nonwoody plant biomass from field crops and agri-
cultural residues could become important raw materials in this
transformation.1�3 Themain sources of nonwoody rawmaterials
are agricultural residues from monocotyledons, including cereal
straw and bagasse, or plants grown specifically for fiber, such as
bamboo, reeds, or elephant grass, and some other plants such as
flax, hemp, kenaf, jute, sisal, or abaca. Nonwoody plants offer
several advantages including short growth cycles, moderate
irrigation requirements, and, in most cases, low lignin contents,
which in principle would result in reduced energy and chemical
consumption during lignin removal.

Flax (Linum usitatissimum) is an important annual plant from
the Linaceae family that is commercially grown worldwide both
for its seeds and for its fibers. Flax fibers have been used for linen
textiles since Egyptian times. In addition, the fibers also provided
natural raw materials for composites and the manufacturing of
high-quality pulps for specialty papers (i.e., paper for cigarettes,
tea bags, currency, prayer books, artwork, stock and bond
certificates, etc.).3,4 Flax plants have two regions in the stem:
an outer portion formed by long bast fibers and a core containing
short fibers. Flax fibers are extracted from the bast or skin of the
stem of the plant by a process called retting, which consists of the
separation of bast fibers from the core tissues. When flax fibers
are extracted from flax straw, the nonfiber parts of the stem, not
including the seed, are normally referred to as shives. By weight,
the core flax fiber (shives) represents up to 75% of the content of
the flax stem. The yield of shives is 2.5 tons for every ton of fiber
produced5 and is mostly discarded or burned. However, there is a
growing interest to add value to the flax shives, and their further
conversion into biofuels and other bioproducts represents an
excellent opportunity.6�8

To maximize the exploitation of flax fibers and shives as a
source of biomass for the production of textiles, paper pulps,
biofuels, or chemicals, a complete understanding of their chem-
istry is required, including the detailed chemical composition.
Previous studies reported significant differences in the chemical
composition of flax bast fibers and shives.6,8 These studies indi-
cated that flax fibers are low in lignin (ca. 5%) and hemicelluloses
(ca. 6%) and high in cellulose (ca. 78%) content, whereas flax
shives contain more lignin (23�31%), more hemicelluloses
(13�26%), and less cellulose (34�53%) than the fiber. Despite
the high differences in lignin content among bast fibers and
shives, studies regarding the detailed composition and structure
of the lignins in both parts have been scarce.9�13

The aim of the present study is, therefore, to get further insight
into the composition and structure of the lignins from flax bast
fibers and shives. The composition of the lignin in flax fibers was
already addressed in our laboratories by in situ pyrolysis-gas
chromatography�mass spectrometry (Py-GC/MS) of the whole
cell walls, without previous lignin isolation;11 however, the extre-
mely low lignin content in the fibers (ca. 3%) made evaluation of
the results extremely difficult and hindered the direct comparison
with the in situ analysis of the lignin in flax shives. Indeed, this low
lignin content is also a limitation for the in situ analysis by other
methods, such as NMR. Therefore, to obtain detailed and com-
parable information on the composition and structure of the
lignins from flax fibers and shives, we isolated the so-called milled
wood lignins (MWL) according to classical procedures14 and
subsequently characterized them by Py-GC/MS, two-dimen-
sional nuclear magnetic resonance spectroscopy (2D-NMR),
and thioacidolysis (followed by Raney nickel desulfurization).
Py-GC/MS is a rapid and highly sensitive technique for
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characterizing the chemical composition of lignins in terms
of their p-hydroxyphenyl (H), guaiacyl (G), and syringyl (S)
units.11,12,15�20 2D-NMR, on the other hand, provides informa-
tion of the structure of the whole macromolecule and is a
powerful tool for lignin structural characterization revealing both
the aromatic units and the different interunit linkages present in
the lignin polymer.18�29 Finally, thioacidolysis is a selective
chemical degradative method that cleaves the most frequent
interunit linkage in lignin, that is, the β-O-40 ether linkage. The
total yields and relative distribution of the thioacidolysis mono-
mers reflect the amount and ring type of lignin units involved in
these alkyl�aryl ether bonds. In addition, the dimers recovered
after thioacidolysis can provide information about the units
involved in the various carbon�carbon and diaryl ether linkages,
often referred to as the “condensed” bonds (including 5-50, 4-O-
50, β-10, β-50, and β-β0).18,19,27,30�33 Knowledge of the composi-
tion and structure of the lignin polymer of flax fibers and shives
will help to maximize the industrial exploitation of this inter-
esting crop.

’MATERIALS AND METHODS

Samples. Flax (L. usitatissimum) bast fibers and shives (cultivar
Hermes) were supplied by CELESA pulpmill (Tortosa, Spain) andwere
carefully separated by hand. Flax fibers and shives were air-dried and
milled using an IKA cutting mill to pass through a 100-mesh screen. The
milled samples were successively extracted with acetone in a Soxhlet
apparatus for 8 h and then with hot water (3 h at 100 �C). Klason lignin
content was estimated as the residue after sulfuric acid hydrolysis of the
pre-extracted material according to Tappi rule T222 om-88.34 Two
replicates were used for each sample. The relative standard deviation for
the Klason lignin determination was <5%.
Lignin Isolation. The MWL samples were obtained according to

the classical procedure.14 Extractive-free ground samples (25 g, prepared
as described above) were finely ball-milled in a Retsch PM100 planetary
ball mill (50 h at 300 rpm, with cycles of 20 min of milling and 25 min of
rest to let the jar cool) using an agate jar (500 mL) and agate
ball bearings (20 � 20 mm) and toluene as coolant. After this
treatment, the ball-milled samples were submitted to an extraction
(4 � 24 h) with dioxane/water (9:1, v/v) (5�10 mL solvent/g milled
sample). The solution was centrifuged and the supernatant evaporated
at 40 �C at reduced pressure. The residue obtained (raw MWL) was
redissolved in a solution of acetic acid/water 9:1 (v/v) (20mL solvent/g
raw milled wood lignin). The solution was precipitated into water, and
the residue was separated by centrifugation, milled in an agate mortar,
and dissolved in a solution of 1,2-dichloromethane/ethanol (1:2, v/v).
The mixture was then centrifuged to eliminate the insoluble material.
The resulting supernatant was precipitated in diethyl ether, and the
obtained residue was separated by centrifugation. This residue was then
resuspended in petroleum ether and centrifuged again to obtain the final
purified MWL fraction, which was dried under a current of N2. The final
yields ranged from 10 to 15% of the original Klason lignin content.
Extension of milling time, which would increase yield, was avoided to
prevent chemical modifications on the lignin structure. The purity of the
MWL preparations was investigated by analyzing their lignin content by
the acetyl bromide method.35

Gel Permeation Chromatography (GPC).GPCwas performed
on a Shimadzu LC-20A LC system (Shimadzu, Kyoto, Japan) equipped
with a photodiode array (PDA) detector (SPD-M20A; Shimadzu) using
the following conditions: column, TSK gel α-M + α-2500 (Tosoh,
Tokyo, Japan); eluent, 0.1 M LiBr in dimethylformamide (DMF); flow
rate, 0.5 mLmin�1; column oven temperature, 40 �C; sample detection,
PDA response at 280 nm. The data acquisition and computation used

LCsolution version 1.25 software (Shimadzu). The molecular weight
calibration was via polystyrene standards.
Analytical Pyrolysis. Pyrolysis of the MWL isolated from flax

fibers and shives (approximately 100 μg) was performed with a 2020
microfurnace pyrolyzer (Frontier Laboratories Ltd.) connected to an
Agilent 6890 GC-MS system equipped with a DB-1701 fused-silica
capillary column (30 m� 0.25 mm i.d., 0.25 μm film thickness) and an
Agilent 5973 mass selective detector (EI at 70 eV). The pyrolysis was
performed at 500 �C. The oven temperature was programmed from
50 �C (1 min) to 100 at 30 �C min�1 and then to 290 �C (10 min) at
6 �Cmin�1. Helium was the carrier gas (1 mL min�1). The compounds
were identified by comparing their mass spectra with those of the Wiley
and NIST libraries and those reported in the literature.15�18 Peak molar
areas were calculated for the lignin degradation products, the summed
areas were normalized, and the data for two repetitive analyses were
averaged and expressed as percentages. The relative standard deviation
for the pyrolysis data was <5%.
NMR Spectroscopy. NMR spectra of the MWL from flax fibers

and shives were recorded at 25 �C on a Bruker AVANCE 500 MHz
equipped with a z-gradient triple-resonance probe. Around 40 mg of
MWL was dissolved in 0.75 mL of deuterated dimethyl sulfoxide
(DMSO-d6), and 2D-NMR spectra were recorded in heteronuclear
single-quantum correlation (HSQC) experiments. The spectral widths
were 5000 and 13200 Hz for the 1H and 13C dimensions, respectively.
The number of collected complex points was 2048 for the 1H dimension
with a recycle delay of 5 s. The number of transients was 64, and 256 time
increments were always recorded in the 13C dimension. The 1JCH used
was 140 Hz. The J-coupling evolution delay was set to 3.2 ms. A squared
cosine-bell apodization function was applied in both dimensions. Prior
to Fourier transformation, the data matrices were zero filled to 1024
points in the 13C- dimension. The central solvent peak was used as an
internal reference (δC 39.5;δH 2.49). HSQC cross-signals were assigned
by comparison with the literature.18�20,22�29 A semiquantitative analysis
of the intensities of the HSQC cross-signal intensities was performed.22

Because the cross-signal intensity depends on the particular 1JCH value,
as well on the T2 relaxation time, a direct analysis of the intensities is
impossible. Thus, the integration on the cross-signals was performed
separately for the different regions of the HSQC spectrum, which
contain signals that correspond to chemically analogous carbon�proton
pairs. For these signals, the 1JCH-coupling value is relatively similar and
can be used semiquantitatively to estimate the relative abundance of the
different species. In the aliphatic oxygenated region, the relative
abundance of side chains involved in the different interunit linkages
was estimated from the Cα�Hα correlations to avoid possible inter-
ference from homonuclear 1H�1H couplings, except for structure I,
where Cγ�Hγ correlations were used, and the relative abundance of side
chains involved in different substructures and terminal structures was
calculated (with respect to total side chains). In the aromatic region,
C�H correlations from H, G, and S units were used to estimate the
lignin H:G:S ratio, and the comparison of the intensities of the Cβ�Hβ

correlations of structuresI and J was used to estimate the abundances of
the latter.
Thioacidolysis followed by Raney Nickel Desulfurization.

Thioacidolysis of 5 mg of MWL was performed as described by Rolando
et al.32 using 0.2 M BF3 etherate in dioxane/ethanethiol (8.75:1). The
reactions products were extracted withCH2Cl2, dried, and concentrated.
Two-hundred microliters of the CH2Cl2 solution containing the thioa-
cidolysis products was desulfurated as described by Lapierre et al.30 GC-
MS analysis of the monomeric and dimeric compounds was performed
in a Varian Star 3400 instrument coupled to an ion-trap detector Varian
Saturn 2000, using a DB-5HT fused-silica capillary column from J&W
Scientific (30 m � 0.25 mm i.d., 0.1 μm film thickness). The tempera-
ture was programmed from 50 to 110 �C at 30 �C/min and then to
320 �C (13 min) at 6 �C/min. The injector and transfer line were
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at 300 �C. Helium was the carrier gas (2 mL/min), and octadecane was
used as internal standard. Dimer identification was based on previously
reported mass spectra18,19,27,30,33 and mass fragmentography.

’RESULTS AND DISCUSSION

The lignin contents in flax bast fibers and shives were esti-
mated according to the Klason method and revealed a low lignin
content in the fibers (3.8%) and a high lignin content in the
shives (29.0%). These values agree well with previous results that
indicated low lignin content in flax bast fibers in the range of
1.4�4.2% and a high lignin content in flax shives in the range of
23.7�31.4%.6,8,13,36 The lignin content in flax bast fibers is lower
than in other bast fibers, such as hemp (4.6%), jute (13.3%), or
kenaf (11.4%).18,37,38 This low lignin content observed in flax
bast fiber has prompted some authors to conclude that flax bast
fibers do not contain lignin and that the Klason lignin content
determined was mainly due to contamination from residual
shives or epidermis/cuticle material remaining after the retting

Table 1. Weight-Average (Mw) and Number-Average (Mn)
Molecular Weights and Polydispersity (Mw/Mn) of theMWLs
Isolated from Flax (L. usitatissimum) Fibers and Shives

flax fiber MWL flax shive MWL

Mw (g mol�1) 7620 8825

Mn (g mol�1) 2123 2337

Mw/Mn 3.59 3.77

Figure 1. Py-GC/MS chromatograms of the MWL isolated from flax
(L. usitatissimum) fibers and shives. The identities and relative abun-
dances of the released compounds are listed in Table 2.

Table 2. Identification and Relative Molar Abundance
of the Lignin-Derived Compounds Identified in the
Py-GC/MS of the MLWs from Flax (L. usitatissimum)
Fibers and Shives

no. compound

flax fiber

MWL

flax shive

MWL

1 phenol 2.0 0.8

2 methylphenol 1.5 0.7

3 methylphenol 4.7 1.4

4 guaiacol 12.1 9.8

5 C2-phenol 1.7 1.0

6 C2-phenol 0.8 0.1

7 C2-phenol 0.4 0.1

8 4-methylguaiacol 19.7 16.7

9 4-vinylphenol 1.8 0.4

10 C3-phenol 0.0 0.4

11 4-ethylguaiacol 5.0 2.5

12 4-vinylguaiacol 13.7 10.6

13 syringol 3.2 1.3

14 eugenol 1.8 2.3

15 (Z)-isoeugenol 1.3 2.0

16 vanillin 2.9 9.0

17 4-methylsyringol 3.3 1.4

18 (E)-isoeugenol 8.0 8.5

19 homovanillin 0.0 1.4

20 propyneguaiacol 0.8 2.2

21 propyneguaiacol 1.1 2.3

22 acetoguaiacone 1.5 2.5

23 vanillic acid methyl ester 0.2 0.3

24 4-ethylsyringol 0.5 0.1

25 guaiacylacetone 1.7 1.1

26 4-vinylsyringol 1.7 1.0

27 propiovanillone 0.8 0.7

28 guaiacyl vinyl ketone 0.3 0.6

29 4-allylsyringol 0.5 0.3

30 4-propylsyringol 0.1 0.1

31 (Z)-4-propenylsyringol 0.5 0.2

32 syringaldehyde 0.8 1.1

33 (Z)-coniferyl alcohol 0.1 1.4

34 propynesyringol 0.3 0.1

35 propynesyringol 0.3 0.2

36 (E)-4-propenylsyringol 2.5 0.9

37 acetosyringone 0.6 0.6

38 (E)-coniferaldehyde 0.0 8.3

39 (E)-coniferyl alcohol 0.9 4.7

40 syringylacetone 0.5 0.2

41 syringic acid methyl ester 0.2 0.1

42 propiosyringone 0.1 0.2

43 (E)-sinapaldehyde 0.0 0.6

44 (E)-sinapyl alcohol 0.0 0.1

%H 13.1 4.8

%G 71.9 86.8

%S 15.1 8.4

S/G 0.21 0.10

H/G 0.18 0.05
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processes.9,10 However, later studies unambiguously demon-
strated the presence of this low lignin content in flax bast
fibers by immunological and chemical (thioacidolysis and nitro-
benzene oxidation) analyses,13 in agreement with our present
results.

The composition of the lignin in flax fibers has already been
addressed by Py-GC/MS of the whole cell walls, without pre-
vious lignin isolation;11 however, the low lignin content avoids
the in situ analysis of this lignin by other methods, such as
NMR, and the direct comparison with the in situ analysis of the
lignin in flax shives impossible. Therefore, to obtain detailed
information on the composition and structure of the flax lignins,
the MWL, a lignin preparation considered to be the most rep-
resentative of the whole native lignin in the plant,14 despite its
low yield and the possibility of some modifications during
milling,39 was isolated from both flax fibers and shives and
subsequently characterized by several analytical techniques,
including GPC, Py-GC/MS, 2D-NMR, and thioacidolysis
(followed by Raney nickel desulfurization). However, we must
keep in mind that the results obtained here reflect only the
structure of isolated MWL, which represents a part of the whole
lignin in the plant.
Molecular Weight Distributions. The values of the weight-

average (Mw) and number-average (Mn) molecular weights, esti-
mated from the GPC curves (relative values related to poly-
styrene), and the polydispersity (Mw/Mn) of the MWL from flax
fibers and shives are indicated in Table 1. The two MWLs
exhibited similar molecular weight distributions, in the range of
8825�7620 g mol�1, being slightly higher in the case of the
MWL from flax shives. In addition, both MWLs exhibited
relatively narrow molecular weight distributions, with Mw/Mn

< 4. Those values are comparable to literature values for various
isolated lignins.40

Py-GC/MS of the MWLs from Flax Bast Fibers and Shives.
The Py-GC/MS chromatograms of the MWLs isolated from flax
bast fibers and shives are shown in Figure 1, and the identities and
relative abundances of the released compounds are listed in
Table 2. The pyrograms showed compounds derived from H, G,
and S lignin units, the main lignin-derived compounds released
being guaiacol (4), 4-methylguaiacol (8), 4-ethylguaiacol (11),
4-vinylguaiacol (12), vanillin (16), syringol (13), (E)-isoeugenol
(18), and 4-methylsyringol (17). High amounts of (E)-conifer-
aldehyde (38) and (E)-coniferyl alcohol (39) were also released
from the flax shive lignin but were minor compounds among the
pyrolysates of flax fiber lignin. In both MWLs, the lignin-derived
G-type phenols were present in higher abundances than the
respective H- and S-type phenols, with H:G:S compositions of
13:72:15 and 5:87:8 for the MWL from flax fibers and shives,
respectively. The S/G ratios were low in both cases, with a ratio
of 0.21 for the fibers and 0.10 for the shives. The S/G ratio of the
flax bast lignin agrees well with the values estimated upon in situ
Py-GC/MS of flax fibers, without previous lignin isolation.11 Flax
bast fibers present the lowest S/G ratio when compared to other
bast fibers, such as those of hemp (0.64), jute (2.1), or kenaf
(5.4).11,12,18,26,28,37,38,41 The content of H units was high, espe-
cially in the lignin from flax bast fibers, having a 13% content of H
units. Important amounts of H-lignin units (13�25% of all lignin
units) were also released from flax bast fibers by nitrobenzene
oxidation of whole cell walls, in contrast to only 1% H units
released from flax shives.13 High contents of H-lignin units were
also reported in hemp bast fibers.28,38

The high G-lignin content observed in flax fibers, and espe-
cially in flax shives, makes these lignins highly recalcitrant toward
depolymerization. This may affect some uses of these raw mate-
rials, such as the delignification stages during alkaline pulping,
due to the lower reactivity of the G-lignin compared to S-lignin in

Figure 2. HSQC NMR spectra (δC/δH 45�160/2.6�8.0) of the MWLs isolated from flax (L. usitatissimum) fibers and shives. See Table 3 for signal
assignment and Figure 3 for the main lignin structures identified.
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alkaline systems.42 The G units have a free C-5 position available
for additional carbon�carbon or ether interunit bonds, which
makes them fairly resistant to lignin depolymerization during
alkaline pulping. Therefore, the efficiency of pulping is often
directly proportional to the amount of S units in lignin, and thus
lower S/G ratios imply lower delignification rates, more alkali
consumption, and therefore lower pulp yield.17,43 In addition, the
lignin from flax bast fibers contains a high proportion of H-units,
which will also form additional linkages with both C3 and C5
positions and thus can be even more condensed than G units.
Therefore, and despite the low lignin content present in flax bast
fibers (3.8%), its composition makes them fairly resistant to
alkaline depolymerization. In the case of flax shives, its extremely
high lignin content (29.0%), together with its very low S/G ratio,
makes them especially recalcitrant.

2D-NMR of the MWLs from Flax Bast Fibers and Shives.
For a more complete and in-depth structural characterization of
the lignins, the MWLs of flax fibers and shives were subjected to
2D-NMR analysis that provides information of the structure of the
whole macromolecule and is a powerful tool for lignin structural
characterization. The HSQC NMR spectra (δC/δH 45�160/
2.6�8.0) of the MWL from flax fibers and shives are shown in
Figure 2. The main lignin cross-signals in the HSQC spectra were
assigned according to the literature18�20,22�29 and are listed in
Table 3; the main substructures found are depicted in Figure 3.
The side-chain region of the spectra (δC/δH 50�90/2.6�5.8)

gives useful information about the different interunit linkages
present in the lignin from flax fibers and shives. The spectra show
prominent signals corresponding to β-O-40 alkyl-aryl ether
linkages (substructure A). The Cα�Hα correlations in β-O-40
substructures were observed in overlapping signals at δC/δH
71.0/4.74 and 71.6/4.86 for structures linked to G or S lignin-
units, respectively. Likewise, the Cβ-Hβ correlations were ob-
served in signals at δC/δH 83.5/4.28 for β-O-40 structures linked
to G-lignin units and at δC/δH 85.8/4.11 for β-O-40 structures
linked to S-lignin units; interestingly, Cβ�Hβ correlations of β-
O-40 substructures linked to an H-lignin unit could also be
observed at δC/δH 82.9/4.48. The Cγ�Hγ correlations in β-
O-40 substructures were observed at δC/δH 59.4/3.40 and 3.72,
partially overlapped with other signals. In addition to β-O-40 aryl
ether substructures, cross-signals from other linkages were also
observed. Thus, strong signals for resinol (β-β0/α-O-γ0/γ-O-α0
linkages) substructures (B) were observed in both spectra, with
their Cα�Hα, Cβ�Hβ, and the double Cγ�Hγ correlations at
δC/δH 84.8/4.67, 53.5/3.06, and 71.0/3.83 and 4.19, respec-
tively. Phenylcoumaran (β-50/α-O-40 linkages) substructures
(C) were also found in the MWL from flax fibers and shives,
the signals for their Cα�Hα and Cβ�Hβ correlations being
observed at δC/δH 86.8/5.45 and 53.5/3.46, respectively, and
that of Cγ�Hγ correlation overlapping with other signals around
δC/δH 62.5/3.72. Small signals corresponding to spirodienone
(β-10/α-O-α0 linkages) substructures (D) could also be observed
in the spectra, their Cα�Hα, Cα0�Hα0, and Cβ�Hβ correlations
being at δC/δH 81.2/5.09, 84.8/4.75, and 59.60/2.75, respec-
tively. Interestingly, cross-signals characteristic of dibenzodiox-
ocin (50-500/α-O-40/β-O-400 linkages) structures (F) could also
be observed in both HSQC spectra, especially in the case of the
MWL from flax shives, with their Cα�Hα and Cβ�Hβ correla-
tions at δC/δH 83.0/4.82 and 85.2/3.85, respectively. Dibenzo-
dioxocins are important lignin structures in softwoods,44,45

where they act as branching points, and have also been found
in hardwoods,20,46 but these structures have rarely been reported
in herbaceous plants.47 Their abundance in flax is related to the
high G content of flax lignin. Finally, other signals observed in the
side-chain region of the HSQC spectra are the Cγ�Hγ correla-
tions (at δC/δH 61.3/4.09) assigned to cinnamyl alcohol end-
groups (I). The olefinic correlations of the cinnamyl structures
were observed in the aromatic region of the spectra.
The main cross-signals in the aromatic region of the HSQC

spectra (δC/δH 100�160/6.0�8.0) corresponded mainly to the
substituted benzenic rings of the different lignin units. Cross-
signals from S, G, and H lignin units could be observed in the
spectra of the MWL of flax fibers and shives. The S-lignin units
showed a prominent signal for the C2,6�H2,6 correlation at δC/
δH 103.8/6.69, whereas the G units showed different correlations
for C2�H2 (δC/δH 110.9/6.99), C5�H5, and C6�H6 (δC/δH
114.9/6.72, 6.94, and 118.7/6.77). Signals of H-lignin units at

Table 3. Assignments of the Lignin 13C�1H Correlation
Signals in the HSQC Spectra of the MWLs from Flax
(L. usitatissimum) Fibers and Shives

label δC/δH assignment

Cβ 53.5/3.46 Cβ�Hβ in phenylcoumaran substructures (C)

Bβ 53.5/3.06 Cβ�Hβ in resinol substructures (B)

�OMe 55.6/3.73 C�H in methoxyls

Aγ 59.4/3.40

and 3.72

Cγ�Hγ in β-O-40 substructures (A)

Dβ 59.6/2.75 Cβ�Hβ in spirodienone substructures (D)

Iγ 61.3/4.09 Cγ�Hγ in cinnamyl alcohol end-groups (I)

Cγ 62.5/3.72 Cγ�Hγ in phenylcoumaran substructures (C)

Aα(G) 71.0/4.74 Cα�Hα in β-O-40 linked to a G unit (A)

Bγ 71.0/3.83

and 4.19

Cγ�Hγ in resinol substructures (B)

Aα(S) 71.6/4.86 Cα�Hα in β-O-40 linked to a S unit (A)
Dα 81.2/5.09 Cα�Hα in spirodienone substructures (D)

Aβ(H) 82.9/4.48 Cβ�Hβ in β-O-40 linked to a H unit (A)

Fα 83.0/4.82 Cα�Hα in 5-50 (dibenzodioxocin)
substructures (F)

Aβ(G) 83.5/4.28 Cβ�Hβ in β-O-40 linked to a G unit (A)

Bα 84.8/4.67 Cα�Hα in resinol substructures (B)

Fβ 85.2/3.85 Cβ�Hβ in 5-50 (dibenzodioxocin)
substructures (F)

Dα0 84.8/4.75 Cα0Hα0 in spirodienone substructures (D)

Aβ(S) 85.8/4.11 Cβ�Hβ in β-O-40 linked to a S unit (A)
Cα 86.8/5.45 Cα�Hα in phenylcoumaran substructures (C)

S2,6 103.8/6.69 C2,6�H2,6 in etherified syringyl units (S)

G2 110.9/6.99 C2�H2 in guaiacyl units (G)

J2(G) 112.2/7.42 C2�H2 in cinnamyl aldehyde end-groups (J)

H3,5 114.9/6.74 C3,5�H3,5 in p-hydroxyphenyl units (H)

G5/G6 114.9/6.72

and 6.94

118.7/6.77

C5�H5 and C6�H6 in guaiacyl units (G)

J6(G) 123.2/7.19 C6�H6 in cinnamyl aldehyde end-groups (J)

H2,6 128.0/7.23 C2,6�H2,6 in p-hydroxyphenyl units (H)

Jβ 126.1/6.76 Cβ�Hβ in cinnamyl aldehyde end-groups (J)

Iβ 128.4/6.23 Cβ�Hβ in cinnamyl alcohol end-groups (I)

Iα 128.4/6.45 Cα�Hα in cinnamyl alcohol end-groups (I)

Jα 153.4/7.61 Cα�Hα in cinnamyl aldehyde end-groups (J)
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δC/δH 114.9/6.74 and 128.0/7.23 for C3,5�H3,5 and C2,6�H2,6,
respectively, were detected in both HSQC spectra, the latter
overlapping with C5�H5 in G units, being especially abundant in
theMWL of flax fibers, as already observed by Py-GC/MS. Other
signals in this HSQC region of the spectra are from cinnamyl
alcohol end-groups (I), with their Cα�Hα and Cβ�Hβ correla-
tions observed at δC/δH 128.4/6.45 and 128.4/6.23, respec-
tively; and cinnamaldehyde end-groups (J), with the Cα�Hα and
Cβ�Hβ correlations observed at δC/δH 153.4/7.61 and 126.1/
6.76, respectively. The total relative content of the cinnamalde-
hyde end-groups was estimated by comparison of the intensities
of the Cβ�Hβ correlations in cinnamyl alcohols (I) and alde-
hydes (J). The aromatic cross-signals of the cinnamyl alcohol
end-groups overlapped with the same signals in lignin S and G
units. However, this was not the case for some of the cinnamal-
dehyde aromatic cross-signals revealing the presence of conifer-
aldehyde end-groups (J(G)), characterized by C2�H2 and
C6�H6 correlation signals at around δC/δH 112.2/7.42 and

123.2/7.19, respectively. These cross-signals were only evi-
denced in the spectrum of the MWL from flax shives.
The relative abundances of the main interunit linkages

(referred to as the total side chains) present in the MWL of
the flax fibers and shives, as well as the relative abundance of the
H, G, and S units and the S/G ratio, calculated from the HSQC
spectra, are shown in Table 4, which also shows the relative
abundances of the different substructures. The main substruc-
tures present in the lignin from flax bast fibers were the β-O-40
alkyl�aryl ether ones (A), which account for 58% of all side
chains, followed by the β-50 phenylcoumaran structures (C) with
11% and by the β-β0 resinol substructures (B) that involved 9%
of all side chains. Other lignin substructures, such as spirodie-
nones (D) and dibenzodioxocins (F), were present in lower
proportions, whereas cinnamyl end-groups (I, J) were present in
relatively high abundances. The H:G:S composition determined
upon NMR (15:71:14) and the S/G ratio (0.20) were similar to
that obtained upon Py-GC/MS, as shown above, and confirmed
the high content of G units and the important presence ofH units

Figure 3. Main structures present in the lignin from flax (L. usitatissimum) fibers and shives, as revealed by HSQC 2D-NMR: (A) β-O-40 substructures;
(B) resinol substructures formed by β-β0/α-O-γ0/γ-O-α0 linkages; (C) phenylcoumaran substructures formed by β-50/α-O-40 linkages; (D)
spirodienone substructures formed by β-10/α-O-40 linkages; (F) dibenzodioxocin substructures formed by 50-500/α-O-40/β-O-400 linkages; (I) cinnamyl
alcohol end-groups; (J) cinnamaldehyde end-groups; (H) p-hydroxyphenyl unit; (G) guaiacyl unit; (S) syringyl unit.
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in this lignin. Compared to other bast fibers, such as kenaf or
jute,18,37 the lignin from flax bast fibers presents a lower S/G ratio
and, consequently, a lower proportion of β-O-40 ether linkages,
and a higher proportion of carbon�carbon linked (condensed)
structures (such as β-β0, β-50, 5-50, and β-10). Because the β-O-40

ether linkages are cleaved to a high extent during alkaline
cooking, whereas condensed linkages resist alkaline cooking
conditions,25,48 the relatively high content of condensed struc-
tures in the lignin from flax fibers will make this material more
resistant to alkaline delignification than other bast fibers, despite
its lower lignin content.
In the case of the lignin from flax shives, themain substructures

present were also the β-O-40 aryl ether ones (A), which account
for 50% of all side chains, followed the β-50 phenylcoumaran
structures (C) with 14% and by the β-β0 resinol substructures
(B), which involved 9% of all side chains. Cinnamyl end-groups
(I, J) were also present in important amounts, whereas dibenzo-
dioxocins (F) and spirodienones (D) were present in lower
amounts (4 and 5%, respectively), although in higher propor-
tions than in the lignin from flax bast fibers. The H:G:S
composition determined upon NMR (4:87:9) and the S/G ratio
(0.10) were also similar to that obtained upon Py-GC/MS and
confirmed the extremely high content of G units in this lignin.
The lower abundance of β-O-40 ether linkages and the higher
content of condensed linkages, compared with the MWL from
flax bast fiber, together with the high lignin content (29.0%
Klason lignin), will make flax shives even more difficult to de-
lignify than the bast fibers.
Thioacidolysis of the MWLs from Flax Bast Fibers and

Shives. The MWL from flax fibers and shives were also studied
by thioacidolysis. The thioacidolysis degradation products were
then subjected to a Raney nickel desulfurization, and the pro-
ducts obtained were analyzed by GC-MS. The chromatograms
of the trimethylsilylated thioacidolysis degradation products are
shown in Figure 4. The released compounds were identified
according to previously reported mass spectra.18,19,27,30,33 The

structures of themain compounds identified are shown inFigure 5,
and their mass spectral data and relative molar abundances are
summarized in Table 5.
The composition of the main monomers released after thioa-

cidolysis (analyzed after Raney nickel desulfurization) showed a
predominance of G over S units in the etherified lignin in both
flax fibers and shives and lower amounts of H units, with H:G:S
compositions of 5:72:23 and 7:80:13 for the MWLs from flax
bast fibers and shives, respectively (Table 5). As expected, the
molar S/G ratios obtained, 0.32 and 0.16 for the MWLs of flax
bast fibers and shives, respectively, are higher than those esti-
mated from Py-GC/MS and NMR, because the relative distribu-
tion of the thioacidolysis monomers reflects only the lignin units
involved in alkyl�aryl ether bonds (β-O-40 and α-O-40), and,
therefore, S units are mostly involved in alkyl�aryl ether link-
ages. The S/G ratios obtained upon thioacidolysis agreed well
with those previously reported13 and again indicated that these
lignins are enriched in G units, especially the flax shives. How-
ever, the important amounts of monomeric H units detected
upon thioacidolysis in our work (5 and 7% of the total monomers
released from the lignins of flax bast fibers and shives, re-
spectively), which indicated that some H units are also forming
β-O-40 linkages, could not be detected in previous works.13 It is
interesting to note that β-O-40 aryl ether units involving H units
were clearly seen in the HSQC spectra shown above.

Table 4. Percentage of Lignin Side Chains Forming Different
Interunit Linkages (A�F) and Cinnamyl Alcohol and Cinna-
maldehyde End-groups (I, J), H, G, and S Contents; and S/G
Ratio from Integration of 13C�1H Correlation Signals in the
Side-Chain and Aromatic Regions of the HSQC Spectra of the
MWLs from Flax (L. usitatissimum) Fibers and Shives

flax fiber MWL flax shive MWL

linkage (and substructure)a relative abundances

β-O-40 aryl ether (A) 58 (41) 50 (33)

resinol (B) 9 (13) 9 (12)

phenylcoumaran (C) 11 (15) 14 (19)

spirodienones (D) 3 (4) 4 (5)

dibenzodioxocins (F) 2 (3) 5 (7)

cinnamyl alcohol end-groups (I) 9 (13) 9 (12)

cinnamaldehyde end-groups (J) 8 (11) 9 (12)

percentage of lignin units

H 15 4

G 71 87

S 14 9

S/G ratio 0.20 0.10
a Substructure percentages, taking into account that two side chains are
involved in one resinol-type substructure, are shown in parentheses.

Figure 4. Chromatograms of the thioacidolysis degradation products
(after Raney nickel desulfurization) released from the MWLs isolated
from flax (L. usitatissimum) fibers and shives, as trimethylsilyl derivatives.
The numbers refer to the compounds (monomers and dimers) listed
in Table 5, and the structures are shown in Figure 5. I.S. refers to
octadecane used as internal standard.
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The thioacidolysis lignin monomers (H, G, and S) were
released in lower amounts from the MWL of flax bast fibers
(908μmol/g lignin) than from theMWLof flax shives (1445μmol/
g lignin). Similar results were also obtained after in situ thioacidolysis
of the whole cell walls of flax bast fibers and shives, without previous
lignin isolation, byDay et al.,13 and led these authors to conclude that
the lignin from flax bast fibers was more condensed than the lignin
from flax shives. However, this observation contrasts with the data
obtained from NMR that indicated a slightly higher proportion of

β-O-40 linkages in the lignin from flax bast fibers (58% of all side
chains) than in the lignin from flax shives (50% of all side chains). It
is, however, possible that the purity of theMWL preparations, which
were estimated by the acetyl bromidemethod (a spectrophotometric
assay), and which was also used by Day et al.13 to measure the lignin
content of the whole cell walls, may have overestimated the lignin
content, especially in the case of MWL from bast flax fibers, as has
been reported to occur in herbaceous plants.49 In this sense, it
appears that other moieties are present in theMWL from flax fibers,

Figure 5. Structures of monomeric and dimeric compounds obtained after thioacidolysis and Raney nickel desulfurization of the MWLs isolated from
flax (L. usitatissimum) fibers and shives. The mass spectral data of the compounds (as trimethylsilyl derivatives) are listed in Table 5.
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as suggested by the presence of cross-signals of cutin-like material in
the aliphatic region of the HSQC spectra (not shown).

It is interesting to note that, despite the high proportion of H
units present in the MWL from bast fibers (13% of total lignin

Table 5. Identification, Mass Spectral Fragments, and Relative Molar Abundances of the Compounds (Silylated Monomers
and Dimers) Released after Thioacidolysis and Raney Nickel Desulfurization of the MWLs from Flax
(L. usitatissimum) Fibers and Shives, the Structures of Which Are Depicted in Figure 5

label compound fragmentsa (m/z) Mw flax fiber MWL flax shive MWL

monomers

1 H 208, 193, 179 208 3.6 4.8

2 G 238, 223, 209, 179, 73 238 49.9 54.5

3 S 268, 253, 239,238, 209 268 17.8 10.4

4 H�OH 296, 281, 235, 206, 191, 73 296 1.4 2.3

5 G�OH 326, 311, 236, 206, 179 326 22.4 25.0

6 S�OH 356, 341, 240 356 4.9 3.0

H:G:S composition from monomers 5:72:23 7:80:13

dimers

7 5-50 (HH) 386, 371, 357,209, 179, 73 386 1.0 1.0

8 5-50 (HH) 400, 485, 371, 209, 147, 117, 73 400 1.0 0.7

9 5-50 (GH) 416, 401, 387, 327, 179, 117, 73 416 0.4 0.4

10 5-50 (HH) 414, 399, 385, 147, 73 414 0.4 0.3

11 5-50 (HG) 430, 415, 401, 147, 73 430 0.7 0.4

12 β-10 (HH) 358, 343, 179, 73 358 0.5 0.6

13 5-50 (GG) 446, 431, 417, 416, 73 446 2.9 3.2

14 5-50 (HG) 444, 429, 415, 147, 73 444 0.4 0.4

15 5-50 (GG) 460, 445, 431, 430, 73 460 1.1 1.3

16 β-10 (HG) 388, 373, 209, 179, 73 388 3.5 4.7

17 β-50 (HH) 400, 385, 221, 179, 73 400 0.4 0.8

18 5-50 (GG) 474, 459, 445, 444, 385, 357, 73 474 9.9 9.2

19 4-O-50 (GG) 402, 387, 373, 372, 357, 343, 73 402 2.9 4.0

20 β-10 (GG) 418, 209, 179, 73 418 8.1 9.4

21 β-50 (HG) 430, 415, 251, 236, 207, 179, 73 430 0.8 1.1

22 4-O-50 (GS) 432, 417, 403, 73 432 0.8 0.6

23 β-50 (GG) 446, 431, 237, 209, 179, 73 446 0.2 0.1

24 β-50 (HG, OH) 532, 442, 263, 209, 191, 73 532 2.1 2.5

25 β-50 (GG) 460, 445, 251, 236, 209, 207,179, 73 460 12.6 11.6

26 β-10 (GG, OH) 520, 505, 311, 223, 209, 179, 149, 73 520 6.8 7.6

27 5-50 (GG, OH) 562, 547, 357, 191, 73 562 6.3 6.0

28 β-50 (GG, OH) 562, 472, 352, 263, 209, 191, 73 562 19.8 20.2

29 β-β0 (GS) 502, 306, 269, 239, 209, 73 502 0.3 0.4

30 β-50 (GS) 490, 239, 209, 73 490 1.0 1.2

31 β-10 (GS, OH) 550, 535, 341, 73 550 1.0 0.5

32 β-β0 (SS) 532, 517, 502, 445, 306, 291, 275, 73 532 0.1 0.2

33 β-50 (HG, OH) 532, 209, 179, 147, 73 518 0.6 0.5

34 β-β0 (GS) 502, 487, 472, 415, 276, 73 502 0.2 0.1

35 β-β0 (SS) 532, 517, 502, 445, 306, 291, 275, 73 532 1.3 1.1

36 β-50 (GS, OH) 592, 502, 472, 239, 209, 191, 73 592 4.1 3.7

37 β-10-α-O-α0 (GG) 488, 473, 459, 279, 251, 209, 73 488 2.5 2.3

38 β-β0 (SS) 532, 517, 502, 445, 306, 291, 275, 73 532 0.2 0.1

39 β-10 (SS, OH) 580, 565, 341, 239, 209, 73 580 1.1 0.5

40 β-50 (GG, OH) 548, 339, 223, 209, 179, 149, 73 548 1.9 1.4

41 β-10-α-O-α0 (GS) 518, 503, 489, 279, 251, 239, 209, 73 518 1.5 0.7

42 THF 488, 209, 179, 73 488 1.2 0.7

43 β-50 (GS, OH) 578, 209, 179, 149, 73 578 0.6 0.4

H:G:S composition from dimers 6:86:8 7:86:7
a Linkage type and molecular weight are indicated, in addition to main mass fragments (the base peaks are underlined).
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units), only a minor part of them, those that form β-O-40 link-
ages, were released upon thioacidolysis of this lignin (5% of total
thioacidolysis monomers), which indicates that H units in this
lignin are mostly in condensed form. On the contrary, the higher
proportion of H monomers released upon thioacidolysis of the
MWL from flax shives (7% of total thioacidolysis monomers),
despite the low abundance of H units in this lignin (5% of total
lignin units), indicates that the H units in this lignin are mostly β-
O-40 linked, as can be seen in the HSQC spectrum of Figure 2,
where the signal from the Cβ�Hβ correlations of β-O-40 sub-
structures linked to an H-lignin unit is clearly more intense in
the case of the MWL from flax shives than in the MWL from
flax fibers.
On the other hand, the dimers recovered after thioacidolysis

can provide useful information about the different units involved
in the various carbon�carbon and diaryl ether linkages, often
referred to as the “condensed” bonds (including 5-50, 4-O-50, β-
10, β-50, and β-β0 in Table 5).30,31 The dimers identified were 5-50
(dimers 7�11, 13�15, 18, and 27), β-10 (dimers 12, 16, 20, 26,
31, and 39), β-50 (dimers 17, 21, 23�25, 28, 30, 33, 36, 40, 43),
4-O-50 (dimers 19 and 22), β-β0 tetralin (dimers 29, 32, 34, 35,
and 38), phenylisochroman (dimers 37 and 41, including β-10/
β-O-β0 bonds), and tetrahydrofuran (THF) (dimer 42) types.
The relative molar abundances of the different types of con-
densed dimers released from the MWL of flax fibers and shives
are shown in Table 6. The total amounts of dimeric compounds
released upon thioacidolysis of the MWL from flax bast fibers
(555 μmol/g lignin) were also lower than those released from the
MWL from flax shives (991 μmol/g lignin), probably as a result
of impurities in the former, but the H:G:S composition of the

total identified dimers is similar in both cases. These data,
together with the low amounts of H monomers released from
the MWL of flax bast fibers, despite the high amounts of H
units in this lignin as said above, indicate that the H units present
in flax bast fibers are mostly in the form of trimeric or higher
(oligomeric) condensed structures. In addition, the high yields of
thioacidolysis dimeric structures reveal the high condensation
degree of the flax lignins.
Dimeric compounds with β-50 structures were the most

prominent thioacidolysis dimers released from the lignins of flax
fibers and shives, accounting for 44.1 and 43.5% of the total
identified dimers, respectively. In both cases, the most important
dimeric β-50 structure was formed by two G units, whereas HH,
HG, and GS dimers were released in lower abundances. These
data are in agreement with the 2D-NMR spectra that indicate
that phenylcoumaran structures are the most important con-
densed structures observed in these lignins. β-10 structures
represented the second most abundant dimers and accounted
for 24.9 and 26.3% of all dimeric structures in the MWL of flax
bast fibers and shives, respectively. As occurs with the β-50
structures, the most important β-10 dimeric structure was formed
by two G units, whereas other dimeric structures (HH, HG, GS,
and SS) were present in lower amounts. However, these high
amounts of β-10 dimers observed upon thioacidolysis are not in
agreement with the NMR data shown above, which indicated the
presence of only minor amounts of spirodienones in these lignin
samples (3�4% of all side chains involved). Dimers of 5-50
structure were the third most important dimeric compounds in
these lignin samples, accounting for 24.1 and 23.0% of all dimeric
compounds in flax bast fibers and shives, respectively. Dimers
with two G units were the most abundant, with lower amounts of
HH and HG dimeric structures. Dibenzodioxocins are supposed
to be the main biphenyl structures in lignin;44,45 therefore, the
5-50 dimers can be considered mostly as being dibenzodioxocin
degradation products, although simple biphenyl structures have
also been reported in lignin.21 The rest of the dimeric com-
pounds, such as 4-O-50, β-β0, and THF, were present in lower
amounts. Among these, it is interesting to note the low propor-
tion of β-β0 dimers observed after thioacidolysis (ca. 2% of total
dimeric structures) in contrast to the relatively high amounts of
β-β0 resinol-type structures observed in the HSQC spectra (9%
of all side chains). This fact may indicate these β-β0 resinol-type
structures could probably be linked with other condensed bonds
(β-50 or 5-50) and, therefore, after thioacidolysis they will form
trimers or higher oligomers that cannot be detected. Thioacido-
lysis trimeric compounds formed by β-β0 tetralin dimers linked
by a 4-O-50 ether bond to a G lignin unit have been previ-
ously identified in other bast fibers, such as jute,18 and also in
hardwoods19,50 and softwoods.51

In conclusion, this study indicates that the content, composi-
tion, and structure of the lignins from flax bast fibers and shives
are different. However, and despite the low lignin content in flax
bast fibers, the high proportions of H and, especially, G units,
make the lignin of this fiber highly condensed (including over
40% carbon�carbon-linked lignin substructures) and potentially
resistant to depolymerization. On the other hand, the high
abundance of G units, the low abundance of β-O-40 ether
linkages, and the higher content of lignin condensed substruc-
tures (nearly 50% carbon�carbon-linked substructures) forming
thioacidolysis dimers, together with the high lignin content in flax
shives, make this material still more difficult to depolymerize than
the bast fibers.

Table 6. Relative Molar Abundances of the Different Dimer
Types (See Table 5 and Figure 5) Released after Thioacido-
lysis (and Raney Nickel Desulfurization) of the MWLs from
Flax (L. usitatissimum) Fibers and Shives

linkage type units involved
flax fiber MWL flax shive MWL

5-50 HH 2.3 2.0

HG 1.5 1.2

GG 20.3 19.8

β-10 HH 0.5 0.6

HG 3.5 4.7

GG 17.4 19.3

GS 2.4 1.2

SS 1.1 0.5

β-50 HH 0.4 0.8

HG 3.5 4.1

GG 34.5 33.2

GS 5.7 5.4

4-O-50 GG 2.9 4.0

GS 0.8 0.6

β-β0 GS 0.4 0.5

SS 1.6 1.4

THF GG 1.2 0.7



11098 dx.doi.org/10.1021/jf201222r |J. Agric. Food Chem. 2011, 59, 11088–11099

Journal of Agricultural and Food Chemistry ARTICLE

’AUTHOR INFORMATION

Corresponding Author
*Phone: +34 954624711. Fax: +34 954624002. E-mail: delrio@
irnase.csic.es.

Funding Sources
This study has been funded by the Spanish Project AGL2008-
00709, CSIC Projects 200640I039 and 201040E075, and EU
Projects BIORENEW (NMP2-CT-2006-026456) and LIGNO-
DECO (KBBE-244362). J.R. thanks the Spanish CSIC for an I3P
fellowship; G.M. thanks the Spanish Ministry of Education for a
FPI fellowship.

’ACKNOWLEDGMENT

We thank J. M. Gras and G. Artal (CELESA, Spain) for pro-
viding the flax fibers and shives and Y. Tobimatsu for per-
forming the GPC analyses.

’REFERENCES

(1) Ragauskas, A. J.; Williams, C. K.; Davison, B. H.; Britovsek, G.;
Cairney, J.; Eckert, C. A.; Frederick, W. J.; Hallett, J. P.; Leak, D. J.;
Liotta, C. L.; Mielenz, J. R.; Murphy, R.; Templer, R.; Tschaplinski, T.
The path forward for biofuels and biomaterials. Science 2006, 311,
484–489.
(2) Reddy, N.; Yang, Y. Biofibers from agriculture bioproducts for

industrial applications. Trends Biotechnol. 2005, 23, 22–27.
(3) van Dam, J. E. G.; van Vilsteren, G. E. T.; Zomers, F. H. A.;

Shannon, W. B.; Hamilton, I. T. Increased application of domestically
produced plant fibres in textiles, pulp and paper production, and
composite materials. Industrial Fiber Crops; European Commission
Directorate-General XII: Brussels, Belgium, 1996.
(4) Bos, H. L.; VanDenOever, M. J. A.; Peters, O. C. J. J. Tensile and

compressive properties of flax fibres for natural fibre reinforced compo-
sites. J. Mater. Sci. 2002, 37, 1683–1692.
(5) Cox, M.; El-Shafey, E.; Pichugin, A. A.; Appleton, Q. Preparation

and characterization of a carbon adsorbent from flax shive by dehydra-
tion with sulfuric acid. J. Chem. Technol. Biotechnol. 1999, 74, 1019–1029.
(6) Sain, M.; Fortier, D. Flax shives refining, chemical modification

and hydrophobisation for paper production. Ind. Crops Prod. 2002,
15, 1–13.
(7) Naik, S.; Goud, V. V.; Rout, P. K.; Jacobson, K.; Dalai, A. K.

Characterization of Canadian biomass for alternative renewable biofuel.
Renewable Energy 2010, 35, 1624–1631.
(8) Buranov, A. U.; Mazza, G. Lignin in straw of herbaceous crops

(review). Ind. Crops Prod. 2008, 28, 237–259.
(9) Love, G. D.; Snape, C. E.; Jarvis, M. C.; Morrison, I. M.

Determination of phenolic structures in flax fibres by solid-state 13C-
NMR. Phytochemistry 1993, 35, 489–491.
(10) Morrison, W. H.; Himmelsbach, D. S.; Akin, D. E.; Evans, J. D.

Chemical and spectroscopic analysis of lignins in isolated flax fibers.
J. Agric. Food Chem. 2003, 51, 2565–2568.
(11) del Río, J. C.; Guti�errez, A.; Martínez, A. T. Identifying

acetylated lignin units in non-wood fibers using pyrolysis-gas chroma-
tography/mass spectrometry. Rapid Commun. Mass Spectrom. 2004,
18, 1181–1185.
(12) del Río, J. C.; Guti�errez, A.; Rodríguez, I. M.; Ibarra, D.;

Martínez, A. T. Composition of non-woody plant lignins and cinnamic
acids by Py-GC/MS, Py/TMAH and FT-IR. J. Anal. Appl. Pyrolysis 2007,
79, 39–46.
(13) Day, A.; Ruel, K.; Neutelings, G.; Crônier, D.; David, H.;

Hawkins, S.; Chabbert, B. Lignification in the flax stem: evidence for
an unusual lignin in bast fibers. Planta 2005, 222, 234–45.
(14) Bj€orkman, A. Studies on finely divided wood. Part I. Extraction

of lignin with neutral solvents. Sven. Papperstidn. 1956, 59, 477–485.

(15) Faix, O.; Meier, D.; Fortmann, I. Thermal degradation products
of wood. A collection of electron-impact (EI) mass spectra of mono-
meric lignin derived products. Holz Roh-Werkstoff 1990, 48, 351–354.

(16) Ralph, J.; Hatfield, R. D. Pyrolysis-GC/MS characterization of
forage materials. J. Agric. Food Chem. 1991, 39, 1426–1437.

(17) del Río, J. C.; Guti�errez, A.; Hernando, M.; Landín, P.; Romero,
J.; Martínez, A. T. Determining the influence of eucalypt lignin
composition in paper pulp yield using Py-GC/MS. J. Anal. Appl. Pyrol.
2005, 74, 110–115.

(18) del Río, J. C.; Rencoret, J.; Marques, G.; Li, J.; Gellerstedt, G.;
Jim�enez-Barbero, J.; Martínez, A. T.; Guti�errez, A. Structural character-
ization of the lignin from jute (Corchorus capsularis) fibers. J. Agric. Food
Chem. 2009, 57, 10271–10281.

(19) Rencoret, J.; Marques, G.; Guti�errez, A.; Ibarra, D.; Li, J.;
Gellerstedt, G.; Santos, J. I.; Jim�enez-Barbero, J.; Martínez, A. T.; del
Río, J. C. Structural characterization of milled wood lignin from different
eucalypt species. Holzforschung 2008, 62, 514–526.

(20) Rencoret, J.; Marques, G.; Guti�errez, A.; Nieto, L.; Jim�enez-
Barbero, J.; Martínez, A. T.; del Río, J. C. Isolation and structural
characterization of the milled-wood lignin from Paulownia fortunei
wood. Ind. Crops Prod. 2009, 30, 137–143.

(21) Balakshin, M. Y.; Capanema, E. A.; Goldfarb, B.; Frampton, J.;
Kadla, J. F. NMR studies on Fraser fir Abies fraseri (Pursh) Poir. lignins.
Holzforschung 2005, 59, 488–496.

(22) Liiti€a, T. M.; Maunu, S. L.; Hortling, B.; Toikka, M.; Kilpel€ainen, I.
Analysis of technical lignins by two- and three-dimensional NMR spectros-
copy. J. Agric. Food Chem. 2003, 51, 2136–2143.

(23) Ralph, J.; Marita, J. M.; Ralph, S. A.; Hatfield, R. D.; Lu, F.; Ede,
R. M.; Peng, J.; Quideau, S.; Helm, R. F.; Grabber, J. H.; Kim, H.;
Jimenez-Monteon, G.; Zhang, Y.; Jung, H.-J. G.; Landucci, L. L.;
MacKay, J. J.; Sederoff, R. R.; Chapple, C.; Boudet, A. M. Solution-state
NMR of lignin. In Advances in Lignocellulosics Characterization; Argyr-
opoulos, D. S., Ed.; Tappi Press: Atlanta, GA, 1999; pp 55�108.

(24) Capanema, E. A.; Balakshin, M. Y.; Chen, C.-L.; Gratzl, J. S.;
Gracz, H. Structural analysis of residual and technical lignins by 1H-13C
correlation 2D NMR-spectroscopy. Holzforschung 2001, 55, 302–308.

(25) Ibarra, D.; Ch�avez, M. I.; Rencoret, J.; del Río, J. C.; Guti�errez,
A.; Romero, J.; Camarero, S.; Martinez, M. J.; Jim�enez-Barbero, J.;
Martínez, A. T. Lignin modification during Eucalyptus globulus kraft
pulping followed by totally chlorine free bleaching: a two-dimensional
nuclear magnetic resonance, Fourier transform infrared, and pyrolysis-
gas chromatography/mass spectrometry study. J. Agric. Food Chem.
2007, 55, 3477–3499.

(26) del Río, J. C.; Rencoret, J.; Marques, G.; Guti�errez, A.; Ibarra,
D.; Santos, J. I.; Jim�enez-Barbero, J.; Zhang, L.; Martínez, A. T. Highly
acylated (acetylated and/or p-coumaroylated) native lignins from
diverse herbaceous plants. J. Agric. Food Chem. 2008, 56, 9525–9534.

(27) Rencoret, J.; Guti�errez, A.; Nieto, L.; Jim�enez-Barbero, J.;
Faulds, C. B.; Kim, H.; Ralph, J.; Martínez, A. T.; del Río, J. C. Lignin
composition and structure in young versus adult Eucalyptus globulus
plants. Plant Physiol. 2011, 155, 667–682.

(28) Martínez, A. T.; Rencoret, J.; Marques, G.; Guti�errez, A.; Ibarra,
D.; Jim�enez-Barbero, J.; del Río, J. C. Monolignol acylation and lignin
structure in some nonwoody plants: a 2D-NMR study. Phytochemistry
2008, 69, 2831–2843.

(29) Ralph, J.; Landucci, L. L. NMR of lignins. In Lignin and Lignans;
Advances in Chemistry; Heitner, C., Dimmel, D. R., Schmidt, J. A., Eds.;
CRC Press (Taylor & Francis Group): Boca Raton, FL, 2010; pp
137�234.

(30) Lapierre, C.; Pollet, B.; Monties, B. Thioacidolysis of spruce
lignin: GC-MS analysis of the main dimers recovered after Raney nickel
desulphuration. Holzforschung 1991, 45, 61–68.

(31) Lapierre, C.; Pollet, B.; Rolando, C. New insights into the
molecular architecture of hardwood lignins by chemical degradative
methods. Res. Chem. Intermed. 1995, 21, 397–412.

(32) Rolando, C.; Monties, B.; Lapierre, C. Thioacidolysis. In
Methods in Lignin Chemistry; Lin, S. Y., Dence, C. W., Eds.; Springer-
Verlag: Berlin, Germany, 1992; pp 334�349.



11099 dx.doi.org/10.1021/jf201222r |J. Agric. Food Chem. 2011, 59, 11088–11099

Journal of Agricultural and Food Chemistry ARTICLE

(33) Saito, K.; Fukushima, K. Distribution of lignin interunit bonds
in the differentiating xylem of compression and normal woods of Pinus
thunbergii. J. Wood Sci. 2005, 51, 246–251.
(34) Tappi Test Methods 2004�2005; Tappi Press: Norcoss, GA,

2004.
(35) Johnson, D. B.; Moore, W. E.; Zank, L. C. The spectrophoto-

metric determination of lignin in small wood samples. Tappi 1961,
44, 793–798.
(36) Ross, K.; Mazza, G. Characteristics of lignin from flax shives as

affected by extraction conditions. Int. J. Mol. Sci. 2010, 11, 4035–4050.
(37) Guti�errez, A.; Rodríguez, I. M.; del Río, J. C. Chemical charac-

terization of lignin and lipid fractions in kenaf bast fibers used for
manufacturing high-quality papers. J. Agric. Food Chem. 2004, 52,
4764–4773.
(38) Guti�errez, A.; Rodríguez, I. M.; del Río, J. C. Chemical

characterization of lignin and lipid fractions in industrial hemp bast
fibers used for manufacturing high-quality paper pulps. J. Agric. Food
Chem. 2006, 54, 2138–2144.
(39) Holtman, K. H.; Chang, H. M.; Jameel, H.; Kaddla, J. F.

Quantitative 13C NMR characterization of milled wood lignins isolated
by different milling techniques. J. Wood Chem. Technol. 2006, 26, 21–34.
(40) Baumberger, S.; Fasching, M.; Gellerstedt, G.; Gosselink, R.;

Hortling, B.; Li, J.; Saake, B.; de Jong, E. Molar mass determination of
lignins by size-exclusion chromatography: towards standardisation of
the method. Holzforschung 2007, 61, 459–468.
(41) Marques, G.; Rencoret, J.; Guti�errez, A.; del Río, J. C. Evalua-

tion of the chemical composition of different non-woody plant fibers
used for pulp and paper manufacturing. Open Agric. J. 2010, 4, 93–101.
(42) Tsutsumi, Y.; Kondo, R.; Sakai, K.; Imamura, H. The difference

of reactivity between syringyl lignin and guaiacyl lignin in alkaline
systems. Holzforschung 1995, 49, 423–428.
(43) Gonz�alez-Vila, F. J.; Almendros, G.; del Río, J. C.; Martín, F.;

Guti�errez, A.; Romero, J. Ease of delignification assessment of wood
from different Eucalyptus species by pyrolysis (TMAH)-GC/MS and
CP/MAS 13C-NMR spectroscopy. J. Anal. Appl. Pyrol. 1999, 49,
295–305.
(44) Karhunen, P.; Rummakko, P.; Sipila, J.; Brunow, G.; Kilpel€ainen, I.

Dibenzodioxocins� a novel type of linkage in softwood lignins.Tetrahedron
Lett. 1995, 36, 169–170.
(45) Ralph, J.; Lundquist, K.; Brunow, G.; Lu, F.; Kim, H.; Schatz,

P. F.; Marita, J. M.; Hatfield, R. D.; Ralph, S. A.; Christensen, J. H.;
Boerjan, W. Lignins: natural polymers from oxidative coupling of
4-hydroxyphenylpropanoids. Phytochem. Rev. 2004, 3, 29–60.
(46) Kukkola, E.; Koutaniemi, S.; P€oll€anen, E.; Gustafsson, M.;

Karhunen, P.; Lundell, T. K.; Saranp€a€a, P.; Kilpel€ainen, I.; Teeri,
T. H.; Fagerstedt, K. V. The dibenzodioxocin lignin substructure is
abundant in the inner part of the secondary wall in Norway spruce and
silver birch xylem. Planta 2004, 218, 497–500.
(47) Galkin, S.; Ammalahti, E.; Kilpel€ainen, I.; Brunow, G.; Hatakka,

A. Characterisation of milled wood lignin from reed canary grass
(Phalaris arundinacea). Holzforschung 1997, 51, 130–134.
(48) Gierer, J. Chemistry of delignification. Part I: General concept

and reactions during pulping. Wood Sci. Technol. 1985, 19, 289–312.
(49) Hatfield, R. D.; Grabber, J.; Ralph, J.; Brei, K. Using the acetyl

bromide assay to determine lignin concentrations in herbaceous plants:
some cautionary notes. J. Agric. Food Chem. 1999, 47, 628–632.
(50) €Onnerud, H.; Gellerstedt, G. Inhomogeneities in the chemical

structure of hardwood lignins. Holzforschung 2003, 57, 255–265.
(51) €Onnerud, H. Lignin structures in normal and compression

wood. Evaluation by thioacidolysis using ethanethiol and methanethiol.
Holzforschung 2003, 57, 377–384.


