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bstract

Cells have a complex system for delivering and compartmentalizing proteins and lipids in order to achieve spatio-temporal coordination of
ignaling. Rafts/caveolae are plasma membrane microdomains that regulate signaling pathways and processes such as cell migration, polarization

nd proliferation. Regulation of raft/caveolae trafficking involves multiple steps regulated by different proteins to ensure coordination of signaling
ascades. The best studied raft-mediated endocytic route is controlled by caveolins. Recent data suggest integrin-mediated cell adhesion is a key
egulator of caveolar endocytosis. In this review we examine the regulation of caveolar trafficking and the interplay between integrins, cell adhesion
nd caveolae internalization.
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. Introduction: rafts, caveolae and trafficking

In mammalian cells lipids and proteins are being constantly
hipped from one cell compartment to another as a basal mech-
nism to organize the structure of the cell. In addition, lipid
nd protein traffic is implicated in the regulation of the inten-
ity and amplitude of many signaling pathways that regulate
ey processes such as cell migration, cell cycle, and cell polar-
ty. To regulate the spatio-temporal coupling of effectors and
ctivators, the cell ensures compartmentalization and signal-
ng specificity by selectively partitioning proteins and lipids in
pecific membrane domains. Plasma membrane domains that
ave attracted attention from many fields are the so-called
lipid rafts”. It is difficult to precisely define rafts, although
definition was attempted at a recent Keystone symposium:

Membrane rafts are small (10–200 nm), heterogeneous, highly
ynamic, sterol- and sphingolipid-enriched domains that com-
artmentalize cellular processes. Small rafts can sometimes
e stabilized to form larger platforms through protein–protein
nd protein–lipid interactions” [1]. These membrane domains
rganize proteins and lipids to regulate the intensity of mul-
iple signaling cascades and membrane traffic [2,3]. Besides
holesterol, rafts are also rich in sphingolipids, including gan-
lioside GM1, and lipid-modified proteins such as caveolins,
otillins, Src-family kinases, and glycosylphosphatidylinositol
GPI)-linked proteins. There is considerable uncertainty about
ow raft microdomains are formed in cell membranes and how
o estimate their exact size, density, composition and stability
4–8]. Indeed, the technical difficulties of visualizing native raft
omains in living cells has led to their very existence being
uestioned [9], whereas the existence of protein-based mem-
rane subdomains is more generally accepted [10,11]. In fact,
uch of the controversial data could be reconciled by the notion

hat small and transitory membrane microdomains can be sta-
ilized by proteins or other interactors [12]. Resolution of this
omplex biological question will undoubtedly require a combi-
ation of approaches, including both model membrane systems
nd powerful imaging techniques applied to membranes in living
ells.

One type of raft that is susceptible to fission/fusion with the
lasma membrane is exemplified by caveolae [13]. Caveolae
re cholesterol and sphingolipid-rich plasma membrane invagi-
ations of a diameter of 60–80 nm, and are distinct from other
oated vesicles [13,14]. Biochemically, caveolae partition into
aft fractions (the detergent insoluble fractions of cold lysates
esolved on sucrose gradients) and contain numerous signaling
olecules, including Src family tyrosine kinases, growth factor

eceptors, GPI-anchored proteins and flotillins [14]. Caveolae
re thus enriched in lipids and proteins that partition into raft
omains. Caveolin-1 is the main protein component of caveo-
ae, at least functionally speaking, and is required for caveolae
iogenesis, since virtually all cell types derived from caveolin-1
nockout mice are devoid of caveolae [15,16]. Caveolin-1, but

ot caveolin-2, is required for caveolae formation in non-muscle
ells, and caveolin-3 is required for caveolae formation in muscle
ells. Endocytosis of caveolae is involved in multiple biological
rocesses, including regulation of plasma membrane compo-
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ition and spatio-temporal regulation of signaling molecules
nd their effectors [17]. Many signaling molecules are associ-
ted with caveolae, suggesting that caveolae compartmentalize
ignaling molecules and serve as platforms that integrate the
egulation of their activity, localization and/or effector coupling
14,18]. In addition, caveolin-1 is postulated to play an impor-
ant role in anchorage-dependent cell growth. Indeed a putative
umor suppressor action of caveolin-1 is supported by studies
n caveolin-1−/− null mice and by the occurrence of caveolin-

mutations in human breast cancer. However, caveolin-1 may
unction as a tumor promoter in prostate cancers (reviewed in
ef. [19]). Thus, the effects of caveolin on growth regulatory
athways appear to be multifold and cell-type specific; the solu-
ion to this enigma is the subject of very intense research.

Although caveolae are the best characterized vehicle for raft
rafficking, other as yet poorly characterized vehicles are begin-
ing to be elucidated. Certain viruses and proteins that were
nitially believed to enter the cell through caveolae are able
f enter cells devoid of caveolins, in a process independent of
lathrin and dependent on cholesterol and actin cytoskeleton.
hese recent findings suggest that there are other entry routes

hat share many similarities with caveolae-mediated endocy-
osis [20–23]. We will refer to all these pathways collectively
s raft/caveolae-dependent pathways. Many signaling cascades
ave been shown to be regulated by the localization of key cas-
ade elements in raft/caveolae membrane microenvironments
2,3]. In this way, trafficking of these domains affects the ampli-
ude and the on–off status of many signaling pathways [2,17].
y modulating numerous pathways, these domains contribute

o the regulation of cell migration, the cell cycle, cell polarity,
poptosis, and transcription [2,3,24–26].

Understanding raft/caveolae formation and trafficking is cru-
ial to understanding their function in signaling and tumor and
ell biology. In this review we will focus on the traffic of rafts and
aveolae, the major carrier of lipid domains, its regulation, and
he interplay between trafficking of these membrane domains
nd integrin/cell adhesion.

. Exocytosis of rafts/caveolae

.1. Introduction: exocytosis, SNAREs and rafts

Exocytosis consists of the fusion of vesicles with the plasma
embrane, allowing the incorporation of proteins and lipids into

he plasma membrane and the secretion of the vesicle contents
rom the cell to the extracellular medium [27]. Exocytosis can
ccur constitutively or in a tightly regulated way. Constitutive
xocytosis operates in all cells and the vesicles derive from the
rans-Golgi network (TGN). Regulated exocytosis takes place
n many cell types upon receipt of a specific stimulus, such as
local and transient increase in calcium levels. “Kiss-and-run”

xocytosis occurs in a transient fusion pore, through which only

art of the vesicle content is released, after which the pore is
losed and the vesicle is released back to the cytoplasm.

Exocytosis requires the participation of a large number of
roteins, which are highly conserved in eukaryotic cells [27].
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oluble N-ethylmaleimide-sensitive factor attachment protein
eceptor (SNARE) proteins mediate membrane fusion and are
ssential for exocytosis. SNARE proteins present on oppos-
ng vesicle and plasma membranes form four helical bundles
hrough their SNARE motifs. This protein association brings the

embranes into close apposition and supplies the force required
or fusion. The many different SNARE proteins localize to spe-
ific membrane compartments, contributing to the specificity
f membrane fusion. SNARE proteins are strictly regulated
hrough interactions with regulator proteins in a spatially and
emporally controlled manner (for a detailed review see Refs.
28,27]).

.2. Role of rafts in SNARE-mediated exocytosis

The central questions that remain unanswered are whether
here are preferential plasma membrane regions for vesicle
usion and how exocytotic vesicles are targeted to the right
lace. It has been proposed that proper spatiotemporal regulation
f membrane fusion is partially determined by cholesterol and
phingolipid-rich microdomains, that is rafts [29]. The possible
ole of rafts in regulated exocytosis is suggested by the dis-
ribution of SNARE proteins at detergent resistant membranes
DRM-s). The association of SNARE proteins with rafts has
een documented in Madin-Darby canine kidney (MDCK) cells
30], in PC12 cells [29], and in 3T3-L1 adipocytes, RBL mast
ells, HeLa cells, and brain sinaptosomes [31,32]. These stud-
es showed that SNARE proteins are clustered in raft domains,
ossibly defining the exocytic plasma membrane sites [27]. In
ddition, cholesterol depletion blocks the formation of secretory
esicles, both regulated and constitutive, by the TGN of neuroen-
ocrine AtT-20 cells [33], and sphingolipid depletion results in
he missorting of prohormone convertase 2, a protease of the
egulated secretory pathway involved in the intracellular matu-
ation of prohormones [34]. These studies strongly suggest that
he integrity of rafts is important for exocytosis. However, other
tudies have questioned the presence of SNAREs in rafts, since
hey cluster in cholesterol-rich microdomains that are soluble
n cold Triton-X-100 and do not co-localize with raft markers
uch as GPI-linked proteins or sphingomyelin [35]. These stud-
es also showed that cholesterol depletion inhibits exocytosis,
ndicating that the cholesterol-dependent SNARE clusters define
he vesicle docking sites and are required for membrane fusion
nd exocytosis. The requirement for SNARE clusters suggests
hat a high local concentration of SNARE monomers is nec-
ssary to establish the fusion site. Four different possibilities
or raft function in regulated exocytosis have been proposed:
i) exocytosis occurs exclusively in raft domains; (ii) exocyto-
is occurs exclusively in nonraft domains; (iii) raft and nonraft
omains support different types of exocytosis (full fusion vs.
iss-and-run exocytosis); (iv) the different domains regulate
he fusion of different types of specific vesicle. The molecular

echanism underlying domain-specific fusion might involve the

ntrinsic lipid composition, the protein accumulation/exclusion
nd/or SNARE conformation [27]. However, the exact contri-
ution of rafts to exocytosis is unknown and deserves further
esearch.

t
[

a
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.3. Sorting of rafts/caveolae

Rafts are one of the mechanisms employed by cells to dis-
ribute membrane proteins. Indeed, the raft hypothesis was
riginally proposed to explain the segregation of lipids and mem-
rane proteins during their distribution in polarized epithelia.
heir role has been documented both in the basolateral distribu-

ion from the Golgi complex and in the transport of proteins
rom the TGN to the apical plasma membrane in polarized

DCK [36]. Experiments showing that cholesterol depletion
ecreases apical transport capacity without affecting basolat-
ral sorting suggested that rafts were mainly involved in apical
ransport [37]. However, rafts have also been found in baso-
ateral membranes. Most caveolae localize to the basolateral
omain of epithelial cells, giving rise to one of the most notable
ltrastructural differences between the apical and basolateral
lasma membranes in polarized MDCK cells. The basolateral
ocalization of caveolae has been corroborated in experiments
emonstrating that caveolin-2 localizes only to the basolateral
urface, whereas caveolin-1 is present both at apical and at baso-
ateral poles. Caveolin-1 and -2 are both sorted to basolateral
esicles, whereas caveolin-1 is also targeted to the apical pole
rom the TGN, probably traveling in as-yet uncharacterized non-
aveolar carriers, as recently proposed by Ref. [13]. Caveolin
s cotranslationally translocated into the ER membrane and its
bility to form caveolae is acquired through post-translational
odification during its intracellular transport. Oligomerization

f caveolin, which is required for caveolar biogenesis, begins in
he ER. Caveolin complexes subsequently undergo a number
f changes during their transport to the cell surface, includ-
ng increases in caveolin oligomer size, a decrease in solubility
wing to the association with cholesterol and sphingolipids, and
n increase in the phosphorylation of caveolin-2 [38,39]. This
grees with evidence that neither caveolae nor rafts are present
n the ER. In fact, assembled caveolar domains first appear in the
olgi complex [40]. The behaviour of raft proteins on the surface
f polarized MDCK cells has also been analyzed by antibody
ross-linking [41]. Antibody cross-linking of raft proteins at the
pical plasma membrane induced only small clusters, in con-
rast with the large clusters produced at the basolateral plasma

embrane.

.4. Regulation of caveolar exocytosis

The SNARE protein Syntaxin-6 has been shown to regu-
ate transport from the Golgi complex to the plasma membrane
f caveolin-1, GPI-anchored protein and GM1 [42]. In fact,
aveolin-1 and Syntaxin 6 co-localize at the Golgi in human
kin fibroblasts, while in endothelial cells, caveolin-1 co-
lusters with the t-SNARE proteins SNAP-23 and Syntaxin-4
t the plasma membrane (Fig. 1). Formation of t-SNARE clus-
ers depends on cholesterol and caveolin-1. Co-localization
f caveolin-1 with the organized t-SNARE clusters defines

he sites of fusion of caveolae with the plasma membrane
43].

Involvement of caveolae has also been documented in kiss-
nd-run exocytosis with the plasma membrane; this occurs in an
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Fig. 1. Regulation of the caveolar cycle. The figure depicts the different stages of caveolae trafficking and the currently known proteins regulating each step. At
the plasma membrane, caveolae are linked to the actin cytoskeleton through interaction with filamin. Dynamin plays a role in the initial steps of endocytosis. (1)
MAP3K2 has been implicated in the regulation of kiss-and-run cycles. Src, PKC� and intersectin regulate caveolar internalization. Rab5 has been implicated in the
r play
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egulation of endocytic caveolar carrier traffic towards the endosome. (2) Dyrk3
yntaxin 6 regulates the traffic of caveolar components to the cell surface, and
lasma membrane. (3) The caveolar coat is regulated by ARAF1. Integrins neg

-ethylmaleimide (NEM)-sensitive manner and is mediated by
ingle caveolar vesicles. Caveolae-mediated kiss-and-run exo-
ytosis is regulated by at least two serine/threonine kinases
KIAA0999 and MAP3K2). It appears that caveolae undergo
continuous short-range cycle of docking, fusion and fission.
uring this cycle caveolae remain near the plasma membrane,

lthough they can move between the plasma membrane and
ntracellular pools [44]. These findings establish that caveolar
ndocytosis and exocytosis are tightly coupled. The physiolog-
cal role of this tight coupling is currently unknown.

.5. Role of caveolin in transcytosis

Since rafts are involved both in endocytic and in exocytic
athways, it is not surprising that they have been proposed to
e involved also in transcytosis. This process, which occurs in
olarized cells, is a transcellular transport consisting of endo-
ytosis of cargo by the fission of a vesicle from one side of
he plasma membrane, its traffic across the cell in vesicle car-

iers, and its delivery to the other side of the cell by fusion
ith the plasma membrane [45,46]. In endothelial cells, caveo-

ae have been suggested to carry out this process [13]; however,
here has been no clear demonstration of this as yet [13]. Tran-

m
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s a role in the regulation of long-range traffic mediated by microtubules (MT).
xin-4 and SNAP-23 regulate the fusion of endocytic caveolar carriers with the

regulate caveolae internalization (4).

cytosis is not only used to transport external substances, it is
lso involved in targeting newly synthesized proteins from the
asolateral membrane to the apical surface [45,46]. Newly syn-
hesized membrane proteins are first segregated into apical or
asolateral exocytic pathways. Then, after endocytosis, they are
ither recycled to the same plasma membrane domain or trans-
orted to the opposite cell surface by transcytosis [45]. Contrary
o earlier results [47] transcytosis of proteins (gp114) from the
pical side to caveolae at the basolateral membrane has been
etected [41]. Recently, a role for caveolin-1 has been described
n transcellular migration of leukocytes across the endothelium
fter the induction of transient ICAM-1 clustering [48]. The
ignificance of this large-scale transcytosis mechanism in vivo
emains to be explained.

. Endocytosis of rafts/caveolae

Mammalian cells have evolved complex and diverse strate-
ies to internalize molecules or particles from the plasma

embrane and outside the cell. Particles are endocytosed by

hagocytosis and solutes and fluids by pinocytosis. Pinocyto-
is can be divided into at least four types: macropinocytosis,
lathrin-mediated endocytosis, caveolin-mediated endocytosis,
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nd clathrin- and caveolin-independent endocytosis, and the reg-
lation of these pathways involves shared and specific pathways
49]. The best characterized form of raft internalization is medi-
ted by caveolae, but other types of endocytosis depend on raft
omponents, indicating that caveolae are not the only pathways
hat the cell has evolved to internalize rafts. Many pathogens use
hese pathways to enter the cell, and the mechanisms that reg-
late these entry routes have been identified through the study
f pathogens such as SV40, polyoma virus, coxsackievirus and
ibrio cholerae.

There are few studies implicating clathrin-mediated endocy-
osis – the best characterized form of endocytosis – in the traffic
f raft markers. Anthrax toxin receptor enters the cell through
clathrin and raft-dependent mechanism [50]. In addition,

cute cholesterol depletion blocks clathrin-mediated endocyto-
is [51,52], although this may be through indirect effects on
IP2-mediated actin regulators [53]. Like caveolae-mediated
ndocytosis, clathrin-mediated endocytosis requires dynamin
nd the actin cytoskeleton. Although these examples show that
here is some cross-talk between clathrin-mediated endocytosis
nd raft traffic, it appears that most raft trafficking occurs via
ther routes. The following sections discuss the current under-
tanding of these routes and their regulation.

.1. Caveolin-independent raft endocytosis

Several studies show that some proteins and viruses are inter-
alized through a pathway that is independent of both clathrin
nd caveolae [20–23,54]. These entry routes have been classified
s raft pathways because they are either cholesterol-depletion
ensitive, use GM1 as a receptor, or the proteins that internalize
hrough this pathway reside in DRM domains. The molecules
hat regulate these pathways are mostly unidentified. However,
he regulation of the entry process in these pathways involves
aft components, small Rho GTPases and actin, showing that
uch of the molecular machinery is shared.

.1.1. Dynamin-independent, Cdc42-mediated raft
ndocytosis

In caveolin-1 null MEFs, the cholera toxin B subunit enters
hrough a clathrin and dynamin-independent mechanism that is
artly sensitive to cholesterol depletion [21]. This entry route is
ediated by uncoated tubular or ring-shaped structures [55].
hese structures are very similar to Cdc42-dependent endo-
ytic structures used by GPI-anchored proteins, which enter the
ell through a clathrin- and dynamin-independent and Cdc42-
ependent mechanism [55]. A well known user of the caveolae
ntry route, the SV40 virus, can also use this entry route in vitro.
ells lacking expression of caveolin-1 are able to engulf SV40

n a cholesterol and tyrosine kinase-dependent manner, but inde-
endently of dynamin and Arf6 [20]. Whether SV40 can enter
hrough this pathway in vivo is unknown. The facts that these
athways are used by cholera toxin B subunit and GM1 and are

ensitive to cholesterol depletion suggest that they involve the
nternalization of non-caveolae raft domains.

Little is known about the proteins involved in this entry route.
recent study showed that Flotillin-1 is a putative key player in
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clathrin- and caveolin-independent entry route that it is used by
PI-AP [56]. It will be interesting to determine whether flotillins

re required for SV40 infection and cholera toxin B subunit
ptake in caveolin-1 knockout MEFs. Future studies are needed
o determine whether these phenomena are indeed related to
he same entry route or whether significant differences exist in
erms of the lipid and protein composition and regulation of
hese enigmatic endosomes.

.1.2. Dynamin-dependent and RhoA-mediated endocytosis
Two studies have shown that some receptors, including the

nterleukin 2 receptor (IL-2R) and the �c cytokine receptor,
se a similar entry route that is independent of caveolin and
lathrin, but is dependent on dynamin [22,23]. The require-
ent for dynamin suggests that at least part of the machinery of

aveolae- and clathrin-mediated endocytosis is involved in the
egulation of this entry route. As predicted, this entry route is
ensitive to cholesterol depletion.

Endocytosis of the �c cytokine receptor also appears to be
ighly dependent on the actin cytoskeleton. Souvonnet et al.
howed that siRNA-mediated knock-down of cortactin, an actin
ytoskeleton regulator implicated in clathrin-mediated endocy-
osis [22,57], severely reduced �c cytokine receptor uptake.
hese results show that several features of clathrin-mediated
ndocytosis, including dependence on dynamin and actin reor-
anization, are shared by various entry routes.

.1.3. Macropinocytosis
Macropinocytosis produces large endocytic vesicles that

orm when membrane protrusions fuse with another region of
he plasma membrane to engulf large amounts of fluid into

acropinosomes. Macropinosome formation is preceded by
embrane ruffling, and signals that regulate ruffling are impor-

ant for this type of endocytosis [49]. While the role of Rac
TPase in macropinocytosis is clearly established, there is some

vidence for a role for rafts in this process. Macropinocyto-
is is blocked by cholesterol depletion [58], and membrane
uffles are enriched in certain raft markers [59]. In addition,
ome proteins enter the cell via raft macropinocytosis [60,61].
owever, although macropinocytosis may be dependent on raft

omponents, it is unlikely that the resultant large vesicles would
pecifically trigger the internalization of raft components.

.2. Caveolin-dependent endocytosis

.2.1. Induction of caveolae internalization
The internalization of caveolae has been a focus of interest for

any years. It is widely accepted that caveolae can be endocy-
osed; however, the evidence for its extent is conflicting. Some
tudies report limited movement of plasma membrane caveo-
ae; for example, FRAP studies indicate that plasma membrane
aveolae are highly immobile vesicles [62–64]. In contrast, other
tudies show that caveolae can be highly mobile and rapidly

nternalized and cleared from the plasma membrane [18,65],
nd a recent study has shown that caveolae are highly mobile in
he lung endothelium in vivo [66]. These discrepancies are most
ikely due to the different cell types or conditions used for anal-
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sis. Whatever the explanation, caveolar endocytosis appears to
e a highly regulated process (Fig. 1).

A great deal of information about caveolae internalization
as been gathered from experiments with viruses such as SV40,
olyoma virus, echovirus 1 and respiratory syncytial virus [67].
inding of SV40 to the cell surface induces a number of
hanges that trigger caveolae internalization. SV40 internal-
zation requires clustering of the ganglioside GM1 (the SV40
eceptor), tyrosine phosphorylation and the actin cytoskeleton
68], which suggested that these process might be important for
aveolar endocytosis. Changes in lipid composition have strong
ffects on caveolar dynamics. Caveolar endocytosis is increased
y exogenous glycosphingolipids (GSLs) and by elevated GM1
r cholesterol, without significantly affecting the internalization
ate of other endocytic routes [69]. Furthermore, Caveolin-1-
FP motility is also significantly enhanced by exogenous GSL.

n contrast, overexpression of caveolin-1 reduces internalization
ates [70,71], a phenotype reversible by addition of GSLs [69]. In
ome systems, however, overexpression of caveolin-1 has been
hown to increase internalization [72]. These results suggest that
here is a tight balance between lipid components of caveolae
nd caveolin, and the maintenance of this balance is an important
egulator of caveolae internalization. Pharmacological inhibi-
ion of phosphatases also induces caveolae internalization, and
imilar effects are achieved by insults such as oxidative stress,
eat and hyperosmotic shock [73,74]. The physiological role
f internalization in response to stress is unclear. An impor-
ant regulator of caveolae internalization is integrin signaling;
udden loss of cell adhesion induces striking effects in cave-
lae internalization [18]. This pathway will be discussed in
ection 3.2.2.3.

.2.2. Cellular pathways regulating caveolae
nternalization

The regulation of caveolae internalization is likely to be very
omplex and highly regulated. The importance of understanding
he mechanisms that govern trafficking of these domains and of
on-caveolar caveolin is highlighted by the disruption of normal
aveolin trafficking in limb girdle muscular dystrophy and breast
ancer associated with mutations in caveolin-3 and caveolin-1,
espectively [75–78].

Numerous studies have established that dynamin regulates
n early step in caveolar endocytosis [79,80]. Interference with
ynamin function by RNAi or transfection with dominant nega-
ive forms inhibits caveolae internalization and SV40 infection
68] and integrin-mediated caveolin-1 internalization [17]. Min-
hall and co-workers studied caveolae-mediated albumin and
holera toxin B subunit transport in microvascular endothelial
ells, and concluded that Src-mediated dynamin phosphoryla-
ion was required for proper internalization of caveolae [81].
rc family kinases appear to be key players in this endocytic
oute, since Src regulates both albumin uptake by endothelial
ells and GSL-induced caveolae internalization [69,71,81]. Sim-

larly, PKC� activity is required for regulated internalization of
aveolae [69,82]. Another protein implicated in caveolae inter-
alization in endothelial cells is intersectin, a scaffolding protein
nvolved in clathrin-mediated endocytosis. Intersectin localizes

t
f
I
p
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o the neck of caveolae and interacts with dynamin, suggesting
hat is involved in the fission process [83].

A recent study examined the effect on SV40 infection of
uppressing the expression of 590 individual kinases; 19% of the
inases affected infection, and of these, 34 specifically regulate
he caveolae trafficking [84]. A number of steps in the cycling
f plasma membrane associated caveolae have been described;
aveolae appear to undergo cycles of fission and fusion with
he plasma membrane, and a switch activates trafficking further
nto the cytoplasm [44]. Several kinases that regulate different
spects of caveolar biology have been described, including Src
yrosine kinase, MAP3K2, Dyrk3, and ARAF1 [44] (Fig. 1).

.2.2.1. Role of cytoskeleton in caveolar endocytosis. The actin
ytoskeleton and microtubules are intimately involved in cave-
lae biology. Invaginated caveolae are often detected close to
ctin bundles by electron microscopy [85], and caveolin-1-
FP partially co-localizes with stress fibers in CHO cells [63].
yeast two-hybrid strategy showed that caveolin-1 interacts

ith filamin, which may act as a physical linker between actin
nd caveolae [86]. These studies also demonstrated the role
f RhoA and stress fibers in organizing caveolae. In differen-
iated adipocytes caveolin is tightly associated with the actin
ytoskeleton and both molecules form the rossete-like cav-actin
tructure [87]; however, the functional significance of this tight
ssociation remains undefined.

The exact role of the actin cytoskeleton in caveolae inter-
alization and/or formation is a matter of debate. It has been
roposed that cortical actin constrains the movement of caveo-
ae. This would explain the increased fluorescence recovery time
f photobleached caveolin-1-GFP and its cytosolic accumula-
ion in cells treated with the inhibitor of actin polymerization
atrunculin A [40,63]. Similarly, cytochalasin D treatment
ncreases the lateral motility and clustering of GFP-caveolin-

[62], and under basal conditions cytochalasin D appears to
nduce caveolae internalization [73]. However, earlier studies
eported that internalization requires an intact actin cytoskele-
on [74]. Knock-down of the human kinome showed that SV40
nfection is modulated by actin cytoskeleton regulators, with
ctin polymerization and depolymerization correlating with
ecreased and increased SV40 infection, respectively [84]. A
ore detailed analysis of the role of the actin cytoskeleton in
V40 infection revealed that a cycle of actin depolymeriza-

ion followed by polymerization is required for proper infection,
nvolving the disruption of stress fibers first, and then the for-

ation of actin tails [68]. It is clear that the actin cytoskeleton
lays an important role in caveolae dynamics and internaliza-
ion, but more studies are required to determine its exact role in
he complete cycle of caveolae endocytosis.

There is greater consensus on the role of microtubules in
aveolae traffic. Initial studies showed that accumulation of
nternalized caveolin near the microtubule organizing center
MTOC) or the Golgi apparatus was dependent on intact micro-

ubules [74,88]. Further studies have confirmed the requirement
or microtubules in long-range caveolae movement [40,63].
nterestingly, disruption of microtubules increases the pro-
ortion of invaginated caveolae at the plasma membrane,
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resumably as a result of impaired long-range movement. If this
s the case, it follows that pinching-off of caveolae requires intact

icrotubules. The proteins that link caveolae and microtubules
re currently unknown.

.2.2.2. Role of caveolin-1 tyrosine phosphorylation in caveo-
ar endocytosis. Caveolin-1 tyrosine 14 plays an important role
n caveolae dynamics. Several tyrosine kinases phosphorylate
his residue, including c-Abl, Src, and Fyn [89–92]. In addi-
ion, phosphorylation of this residue is induced by a range of
timuli, including EGF, insulin, Angiotensin II, hydrogen perox-
de, adrenocorticotropin and integrin activation [17,90,93–97].
ephosphorylation of tyrosine 14 is regulated by PTP1b phos-
hatase [98].

Initial observations showed that tyrosine phosphorylation of
aveolin-1 correlated with increased caveolae internalization,
s shown by decreased numbers of invaginated caveolae and
ncreased caveolin-1 staining in the cytoplasm [99]. Similar find-
ngs have been reported for caveolin-1 phosphorylation induced
y EGF. Caveolin-1 is enriched at cell–cell borders in various
ell types [100]. Stimulation with EGF induces tyrosine phos-
horylation of caveolin-1, a loosening of cell–cell junctions and
ovement of caveolin-1-GFP from the cell–cell borders to the

ell interior [100]. In addition, integrin-mediated caveolae inter-
alization is rescued by re-expression of caveolin-1 in caveolin-1
ull MEFs, but not by a non-tyrosine phosphorylatable caveolin-
mutant [17] (see below).
Viruses that enter through caveolae also require tyrosine

hosphorylation for efficient infection. For example, coxsack-
evirus requires phosphorylation of caveolin-1 at tyrosine 14 by
yn tyrosine kinase for entry into epithelial cells [101] and SV40
equires Src tyrosine kinase activity [68].

The exact role of tyrosine 14 phosphorylation in caveolar
ynamics is still unknown. C-terminal Src kinase (Csk), tumor
ecrosis factor-�-receptor associated factor 2 (TRAF2) and
rb7 bind specifically to tyrosine 14 phosphorylated caveolin-1
93,102]. However, the role of these proteins in caveolar traffic
emains unexplored.

.2.2.3. Integrin-regulated caveolae internalization. Integrins
re the main receptors of the extracellular matrix (ECM). They
re heterodimers formed by an � and a � subunit. Integrins are
mportant for an enormous range of biological processes, includ-
ng cell adhesion to the ECM, cell–cell interactions, migration,
roliferation and survival [103]. Activation and/or ligand bind-
ng induces integrin clustering, which leads to the recruitment
f signaling molecules and actin filaments to the generally short
ytoplasmic tail [103]. Numerous proteins interact with integrin
ytoplasmic tails, including talin, filamin and FAK [104,105].
he recruitment of signaling molecules and cytoskeletal ele-
ents initiates multiple signaling cascades that can result in

hanges in cell polarity, cell migration, cell cycle progres-
ion, gene expression and survival [106,107]. Integrin activation

egulates many signaling intermediates, including Erk, PI 3-
inase, FAK, Src family tyrosine kinase and small Rho GTPases
106,107]. In addition, integrin signals are required for coupling
f growth factor receptors to downstream effectors [107]. In

T
t
m
d
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he case of the small Rho GTPase Rac, integrins regulate not
nly its activity, but also, and in contrast to growth factor recep-
ors, Rac targeting to the plasma membrane, where it can bind
ffectors and trigger downstream signaling [108]. The specific
lasma membrane sites to which integrins target Rac are rafts
109]. Other Rho family GTPases such as Rho and Cdc42 also
ind to rafts in an integrin-dependent manner [110–112]. Fur-
her studies have shown that integrins control membrane binding
y GTPases by regulating the internalization of their membrane
inding sites [109].

Several raft markers, including GM1, GPI-anchored proteins,
aveolin-1 and cholesterol itself are rapidly internalized in a
pecific and reversible manner upon loss of integrin-mediated
dhesion. Similarly, the amount of cholesterol-enriched plasma
embrane domains decreases after detachment of senescent

ells, and accompanying this change, caveolin, Fyn and GM1
ove away from raft fractions [113]. Therefore, raft internaliza-

ion occurs upon cell detachment, providing an explanation for
he disruption of Rac targeting and signaling in detached cells
25]. This notion is confirmed by experiments in which GM1
omains are artificially held in the membranes of suspended
ells. Holding GM1 domains in the surface of detached cells
nduces retention of plasma membrane Rac, which in turn is
ble to activate PAK even in non-adherent cells. These stud-
es suggest a model in which integrin-mediated cell adhesion
ermits targeting of Rac to the plasma membrane and its cou-
ling to PAK by preventing internalization of Rac binding sites
ontained in rafts. A more recent study by Gaus et al., using the
eporter molecule Laurdan and two-photon microscopy, showed
hat integrins and phosphocaveolin both contribute to increased
rder at the plasma membrane, since liquid-ordered domains
re internalized and membrane organization is drastically per-
urbed upon cell detachment. Maximum order was detected in
his study at focal adhesions, where phosphocaveolin is local-
zed and recruits membrane components that induce order, such
s cholesterol [114]. Moreover, membrane order in cells lack-
ng caveolin-1 was restored by re-expression of caveolin, but
ot a non-phosphorylatable caveolin mutant. This study thus
nderscores the role of integrins in regulating plasma membrane
omains.

Raft clearance from the plasma membrane upon cell detach-
ent appears to be mediated by the caveolar pathway [17].
etachment triggers a rapid clearance of caveolin-1 and GM1

rom the plasma membrane and increases caveolin-1 co-
ocalization with GM1 in an internal compartment. The principal
vidence supporting the involvement of caveolin-1 in membrane
omain clearance after cell detachment comes from studies in
ells lacking caveolin-1 expression [115]. Fibroblasts derived
rom caveolin-1 knockout mice are not able to internalize GM1
n suspended cells or to shut down the Rac signaling pathway.
he wild type phenotype is rescued by expression of caveolin-
. Similarly, melanoma-derived M21L cells that lack expression
f caveolin-1 are unable to internalize GM1 after detachment.

herefore, uncoupling of integrins from intracellular signaling

riggers the clearance of some enriched cholesterol and GM1
embrane domains from the plasma membrane by a caveolae-

ependent mechanism. Other studies have underscored the
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Fig. 2. Proposed model for integrin-mediated caveolae traffic. The proposed model for the integrin-mediated regulation of caveolae traffic is depicted. In adherent
cells, active integrin signaling prevents caveolae internalization. This is achieved, at least in part, by the localization of phospho-caveolin-1 to focal adhesions. This
allows the coupling of plasma membrane localized-RacGTP and other unknown proteins to their downstream effectors, including PAK1, Akt and Erk. In the absence
of active integrin signaling, i.e., in non-adherent cells, phosphorylated caveolin-1 is relocated to caveolae and this induces their internalization, which uncouples Rac
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nd other proteins from their effectors and thus accelerates the shutting down o

mportance of integrin signaling in caveolin-mediated endocy-
osis [84,116,117]. For example, addition of GSL-s induced an
ncreased internalization of caveolar markers, which coincided
ith partial cell detachment [117]. Little is known about the
echanism of caveolae internalization. However, studies indi-

ate that tyrosine phosphorylation of caveolin-1 after caveolae
ormation is required for this process [17,117]. This is strik-
ng, since phosphorylated caveolin-1 represents less than 1% of
he total caveolin-1 pool [17]. This suggests that, rather than
otal levels of phospho-caveolin-1, a specific pool of caveolin-
, in a specific cell compartment, is important for regulation.
n adherent cells, pY14caveolin-1 is located at focal adhe-
ions but rapidly moves to caveolae when cells are suspended,
nducing internalization of caveolae. These data are also sup-
orted by sucrose gradient fractionation studies, which detect
hospho-caveolin in heavy fractions in adherent cells but in
ight fractions in suspended cells [17]. These results suggest
hat pY14caveolin-1 is required for integrin-regulated caveolae
nternalization.

All these observations have led to the elaboration of a model
or integrin-mediated caveolin internalization (Fig. 2) [115].
n adherent cells, integrins sequester pY14caveolin-1 at focal
dhesions, which leaves Rac and other signaling proteins free
o bind to their binding sites at the plasma membrane, thus
ermitting their signal transduction activity. When cells are
etached, integrins are inhibited, and pY14caveolin-1 moves
o caveolae, inducing their internalization so the binding sites

isappear; Rac and other signaling proteins are thus uncou-
led from their effectors, blocking signal transduction. This
odel predicts that signaling will be increased by the inhi-

ition of caveolae internalization, and this could contribute

t
b
a
2

iple signaling pathways.

o cell transformation. Some of the signaling pathways reg-
lated by integrin-mediated adhesion, including Ras-Erk and
I3K-Akt, are also regulated by caveolin, and their activity is

ndeed retained in suspended caveolin-1−/− cells [17]. More-
ver, alterations to these pathways are frequent in cancer cells.
ormal cells require integrin-ECM mediated signals to properly
roliferate: their growth is anchorage-dependent. In contrast,
ancer cells bypass this requirement and grow in an anchorage-
ndependent manner. The recent studies reviewed here reveal

fascinating connection between caveolar endocytosis and
ntegrin-ECM mediated cell adhesion. Defining the pathways
hat regulate integrin-dependent caveolae internalization will
ndoubtedly reveal novel molecular mechanisms implicated in
ell proliferation and cell migration, and could identify potential
argets for therapeutic intervention.
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