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Abstract

In 2016, the EFSA Panel on Contaminants in the Food Chain (CONTAM) published a scientific opinion
on the acute health risks related to the presence of cyanogenic glycosides (CNGs) in raw apricot
kernels in which an acute reference dose (ARfD) of 20 lg/kg body weight (bw) was established for
cyanide (CN). In the present opinion, the CONTAM Panel concluded that this ARfD is applicable for
acute effects of CN regardless the dietary source. To account for differences in cyanide bioavailability
after ingestion of certain food items, specific factors were used. Estimated mean acute dietary
exposures to cyanide from foods containing CNGs did not exceed the ARfD in any age group. At the
95th percentile, the ARfD was exceeded up to about 2.5-fold in some surveys for children and
adolescent age groups. The main contributors to exposures were biscuits, juice or nectar and pastries
and cakes that could potentially contain CNGs. Taking into account the conservatism in the exposure
assessment and in derivation of the ARfD, it is unlikely that this estimated exceedance would result in
adverse effects. The limited data from animal and human studies do not allow the derivation of a
chronic health-based guidance value (HBGV) for cyanide, and thus, chronic risks could not be
assessed.
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Summary

Following a request from the European Commission, the European Food Safety Authority (EFSA)
Panel on Contaminants in the Food Chain (CONTAM Panel) evaluated the risks to human health related
to the presence of cyanogenic glycosides (CNGs) in foods other than raw apricot kernels. Previous
assessments from the EFSA, in particular the opinion on acute health risks related to the presence of
CNGs in raw apricot kernels and products derived from raw apricot kernels (2016), and assessments
from other international and national scientific bodies have been used as a starting point for the
evaluation together with publications identified in a targeted literature search. EFSA guidance
documents and general principles for risk assessment have been applied for hazard and exposure
assessment in this opinion.

CNGs contain chemically bound cyanide and are present in foods such as almonds, linseed or
cassava. When the plant cells are damaged, by for example grinding or chewing, CNGs and their
degrading enzymes are brought into contact and cyanide is released. Cyanide is readily absorbed from
the gastrointestinal tract and rapidly distributed to all organs. Peak concentrations of cyanide in blood
and tissue depend on the amount of CNGs in the food consumed and the rate of release of cyanide
which in turn depends on the presence and activity of the degrading enzymes. Peak blood cyanide
concentration (assessed by serial measurements of cyanide in whole-blood after ingestion) can be
used as a reliable biomarker for acute cyanide exposure. In a human bioavailability study, mean peak
concentrations of cyanide in blood were different after consumption cassava root, linseed and
persipan, indicating a fast and practically complete release of cyanide after chewing of bitter almonds
and cassava roots but not with linseed and persipan.

In experimental animals, acute toxicity of cyanide and CNGs is characterised by dyspnoea, ataxia,
arrhythmia, convulsions, loss of consciousness, decreased respiration and death. Upon repeated dose
exposure to cyanide, histopathological alterations in the thyroid, kidney, liver and central nervous
system (CNS), and changes in epididymis cauda weights, sometimes paralleled with clinical signs have
been reported, but the findings are not consistent between different studies. With the CNGs linamarin
and amygdalin, alterations in haematology and clinical chemistry parameters and histopathological
alterations were seen. With gari (a cassava product for direct human consumption) and cassava,
behavioural changes have been observed. There are indications of developmental effects in hamsters
exposed to CNGs or cassava and in rats exposed to potassium cyanide (KCN), which were often
observed in the presence of maternal toxicity. Cyanide is not genotoxic. No information is available on
the genotoxicity of CNGs.

The acute lethal oral dose of cyanide in humans is reported to be between 0.5 and 3.5 mg/kg body
weight (bw). The toxic threshold value for cyanide in blood is considered to be between 0.5 mg/L (ca.
20 lM) and 1.0 mg/L (ca. 40 lM), the lethal threshold value ranges between 2.5 mg/L (ca. 100 lM)
and 3.0 mg/L (ca. 120 lM). Signs of acute cyanide poisoning in humans include headache, vertigo,
agitation, respiratory depression, metabolic acidosis, confusion, coma, convulsions and death.
Poisoning cases, some fatal, have resulted from ingestion of amygdalin preparations, bitter almonds
and cassava. Several neurological disorders and other diseases have been associated with chronic
exposure to cyanide in populations where cassava constitutes the main source of calories.

The primary mode of action for acute toxicity of cyanide is the inhibition of oxidative
phosphorylation leading to anaerobic energy production. Due to the high oxygen and energy demand,
brain and heart are particularly sensitive to cyanide which can result in hypoxia, metabolic acidosis and
impairment of vital functions. The role of cyanide in neurological impairment upon long-term
consumption of foods containing CNGs has not been elucidated.

The CONTAM Panel concluded that there are no data indicating that the acute reference dose
(ARfD) for cyanide of 20 lg/kg bw, established in 2016, should be revised and that it is applicable for
acute effects of cyanide regardless of the dietary source. For exposure to cyanide from foods other
than raw apricot kernels, bitter almonds and cassava roots, this ARfD is likely to be over-conservative
because of the lower bioavailability of cyanide from these foods, but establishment of different ARfDs
for different types of food is not appropriate. However, to account for the differences in cyanide
bioavailability after ingestion of certain food items, for cassava and cassava derived products and for
almonds a factor of 1, for linseed a factor of 3 and for marzipan/persipan, a factor of 12 was
calculated based on results from a human bioavailability study. Occurrence data on these foods were
divided by the respective factors for inclusion in the exposure assessment. For all other food items, no
data on bioavailability were available, and a factor of 1 was used as a default worst-case value
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assuming complete cyanide bioavailability. The limited data from animal and human studies do not
allow the derivation of a chronic health-based guidance value (HBGV) for cyanide (CN).

A total of 2,586 analytical results on total cyanide in foods were available in the EFSA database (of
which about 89% came from Germany and of which 46% were left-censored) to estimate acute and
chronic dietary exposure. Highest occurrence values were reported in bitter almonds (mean
concentration 1,437 mg/kg) and in linseed (mean concentration 192.1 mg/kg). No occurrence data
were available in the database for cassava and products derived thereof.

Estimated acute exposures to cyanide originating from foods containing CNGs across 43 different
dietary surveys and all age groups ranged from 0.0 to 13.5 lg/kg bw per day (mean, minimum lower
bound (LB) to mean maximum upper bound (UB)) and 0.0–51.7 lg/kg bw per day (95th percentile
(P95), minimum LB to maximum UB). Estimated chronic exposures to cyanide originating from foods
containing CNGs across 38 different dietary surveys and all age groups ranged from 0.0 to 13.5 lg/kg
bw per day (mean, minimum LB to maximum UB) and from 0.6 to 34.5 lg/kg bw per day (P95,
minimum LB to maximum UB). The highest acute and chronic exposures were estimated for ‘Infants’,
‘Toddlers’ and ‘Other children’ and the main contributors to acute and chronic exposure to cyanide in
all age groups were ‘Biscuits (cookies)’, ‘Juice or nectar from fruits’ and ‘Pastries and cakes’.

Estimated mean dietary acute exposures did not exceed the ARfD of 20 lg CN/kg bw in any age
group. At the P95, the ARfD was exceeded by up to about 2.5-fold in some consumption surveys for
‘Infants’, ‘Toddlers’, ‘Other children’ and the adolescent age groups. The CONTAM Panel notes that
these are likely overestimations, in particular because of the assumptions made regarding full cyanide
bioavailability from foods other than bitter almonds, cassava roots, linseed, persipan and marzipan.

A chronic exposure assessment has also been carried out, although there are insufficient data to
characterise potential risks of chronic exposure to cyanide in a European population.

In addition, exposure ‘back-calculations’ have been carried out to estimate the amount of certain
food items that can be ingested without exceeding the ARfD. This was done for raw cassava root, gari,
cassava flour, ground linseed and bitter almonds as well as for food items for which an EU maximum
level (ML) for cyanide has been established. The bioavailability factors applied for the exposure
assessment have also been applied for these calculations. Depending on the body weight,
consumption of 1.3–14.7 g ground linseed containing a high concentration of 407 mg CN/kg could
reach the ARfD, the corresponding values for consumption of raw cassava root containing a high
concentration of 235 mg CN/kg, being 0.7–8.5 g. If gari or cassava flour containing the respective
Codex Alimentarius Commission (Codex) MLs of 2 mg total CN/kg and 10 mg total CN/kg, respectively,
are consumed, the ARfD is reached with consumption of 87–1,000 g gari and with 17–200 g cassava
flour. Consumption of 0.1–1.4 g bitter almonds (1,477 mg CN/kg) reaches the ARfD. This corresponds
to an amount of less than half a small kernel in ‘Toddlers’ and of 1 large kernel in ‘Adults’. If marzipan
or persipan containing the respective EU maximum limit (ML) of 50 mg CN/kg are consumed, the ARfD
is reached with 42–480 g. Consumption of 35–400 g canned stone fruits containing the respective EU
ML of 5 mg total cyanide/kg leads to an exposure equivalent to the ARfD. If stone fruit marc spirits
and stone fruit spirits contain the EU ML of 35 mg total cyanide/kg, the ARfD is reached by
consumption of 26–57 g, depending on the body weight of the individual.

The overall uncertainty incurred with the present assessment is considered as high. It is more likely
to overestimate than to underestimate the risk.

Validated methods for the quantification of CNGs and total cyanide and investigations on the
variation of hydrolytic enzymes are needed in different foods. The variation of hydrolytic enzymes in
food crops and the potential to identify cultivars of crops with relatively low content of CNG or of
hydrolytic enzymes need to be investigated. More occurrence data for cyanide in raw and processed
foods and consumption data for CNG containing foods are also needed. Human toxicokinetics of CNGs
and released cyanide after ingestion of food items containing CNGs need to be studied further. More
information is needed on the presence of hydrolytic activity in processed foods. More data are needed
to evaluate the potential of cyanide and food items that contain CNGs to cause chronic effects.
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1. Introduction

1.1. Background and Terms of Reference as provided by the requestor

1.1.1. Background

On 1 March 2016, the Panel on Contaminants in the Food Chain (CONTAM) adopted the scientific
opinion on acute health risks related to the presence of cyanogenic glycosides in raw apricot kernels
and products derived from raw apricot kernels.1

The CONTAM Panel established an ARfD for cyanide of 0.02 mg/kg bw (20 lg/kg bw) for use in
assessing the risks associated with the presence of cyanogenic glycosides in apricot kernels.

Cyanogenic glycosides are also present in other food such as linseed and cassava.
Furthermore, maximum levels for hydrocyanic acid are established in nougat, marzipan or its

substitutes or similar products (50 mg/kg) canned stone fruits (5 mg/kg) and alcoholic beverages
(35 mg/kg) by Regulation (EC) No 1334/20082 and 7 g of hydrocyanic acid per hectolitre of 100% vol.
alcohol in stone fruit spirits and fruit marc spirit, established by Regulation (EC) No 110/20083.

In the scientific literature there is evidence that this acute reference dose is applicable to
unprocessed foods with cyanogenic glycosides also containing intact plant b-glucosidase. It is
mentioned that for some foods the approach may be overly conservative due to the delayed and/or
incomplete release of cyanide from the cyanogenic glycosides depending on many factors, as was
demonstrated for linseed. In case of missing or inactivated b-glucosidase, the hazard potential would
be much lower.4

Furthermore, in the scientific opinion of the Scientific Panel on Food Additives, Flavourings,
Processing Aids and Materials in Contact with Food (AFC) on hydrocyanic acid in flavourings and other
food ingredients with flavouring properties,5 adopted on 7 October 2004 the following is concluded
‘Cassava flour is used as a staple food mainly outside Europe; a consumption of 200 g/person would
lead to an estimated intake level of 30 lg HCN/kg bw for a 60 kg adult. In accordance with the JECFA
view such an intake would not be associated with acute toxicity. The highest level of HCN found in
retail marzipan paste is 20 mg HCN/kg. Assuming on one sitting a person of 60 kg consumes 100 g
marzipan containing such a level, that intake would be equivalent to 2 mg HCN or to 0.03 mg/kg bw’.

It is appropriate to consider the need to take regulatory measures as regards the presence of
cyanogenic glycosides in foods which are not yet regulated at EU level and to assess the
appropriateness of existing maximum levels for hydrocyanic acid in food to provide a high level of
human health protection.

Therefore, it is appropriate that EFSA assesses the applicability of the Acute Reference Dose (ARfD)
for cyanogenic glycosides in raw apricot kernels to other food in which cyanogenic glycosides are
present. In case it is concluded that the ARfD for cyanogenic glycosides in raw apricot kernels is not
applicable to other foods in which cyanogenic glycosides are present, EFSA is requested to assess the
human health risks of the presence of cyanogenic glycosides in foods other than raw apricot kernels.

1.1.2. Terms of Reference

In accordance with Art. 29 (1) of Regulation (EC) No 178/2002, the European Commission asks the
European Food Safety Authority for a scientific opinion on the human health risks related to the
presence of hydrocyanic acid in foods other than raw apricot kernels and products derived from apricot
kernels (ground, milled, cracked, chopped).

1 EFSA CONTAM Panel (EFSA Panel on Contaminants in the Food Chain), 2016. Scientific opinion on the acute health risks
related to the presence of cyanogenic glycosides in raw apricot kernels and products derived from raw apricot kernels. EFSA
Journal 2016;14(4):4424, 47 pp. https://doi.org/10.2903/j.efsa.2016.4424 http://www.efsa.europa.eu/sites/default/files/scientif
ic_output/files/main_documents/4424.pdf

2 Regulation (EC) No 1334/2008 of the European Parliament and of Council of 16 December 2008 on flavourings and certain
food ingredients with flavouring properties for use in and on foods and amending Council Regulation (EEC) No 1601/91,
Regulations (EC) No 2232/96 and (EC) No 110/2008 and Directive 2000/13/EC. OJ L 354, 31.12.2008, p. 34.

3 Regulation (EC) No 110/2008 of the European Parliament and of the Council of 15 January 2008 on the definition, description,
presentation, labelling and the protection of geographical indications of spirit drinks and repealing Council Regulation (EEC)
No 1576/89. OJ L 39, 13.2.2008, p. 16.

4 Abraham K., Buhrke T., Lampen A. (2016) Bioavailability of cyanide after consumption of a single meal of foods containing high
levels of cyanogenic glycosides: a crossover study in humans. Arch. Toxicol (2016) 90: 559–574.

5 http://onlinelibrary.wiley.com/doi/10.2903/j.efsa.2004.105/epdf
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In particular, the scientific opinion should inter alia comprise:

1) Evaluation of the applicability of the ARfD established for cyanogenic glycosides in raw
apricot kernels for other foods in which cyanogenic glycosides are present.

2) Evaluation of the relevance of chronic effects related to the human dietary exposure to
cyanogenic glycosides.

3) Estimation of acute and (if relevant) chronic dietary exposure of the EU population,
including consumption patterns of specific (vulnerable) groups of the population.

1.2. Interpretation of the Terms of Reference

In the Terms of Reference (ToR) as provided by the European Commission, EFSA was requested to
address the risks to human health related to the presence of hydrocyanic acid (hydrogen cyanide,
HCN) in foods other than raw apricot kernels. The EFSA Panel on Contaminants in the Food Chain
(CONTAM Panel) noted that free HCN is actually not present in food at toxicologically relevant
concentrations and that any risks are related to the release of HCN from cyanogenic glycosides (CNGs)
present in plant-derived food. CNGs are produced as secondary metabolites by various plant species
and probably serve as a defence mechanism against herbivores, because CNGs release highly toxic
HCN when hydrolysed. Hydrolytic enzymes are stored separately from CNGs in intact plants. However,
when plant material is chewed or otherwise processed, hydrolytic enzymes and CNGs come in contact
and HCN is formed.

Because of its weak acidity, HCN always exists as a mixture of non-dissociated acid (HCN) and its
dissociated form (cyanide ions, CN�) in aqueous biological fluids, the proportion of each form in the
dissociation equilibrium depending on the pH of the fluid. Therefore, the term ‘cyanide’ (or CN) will be
used throughout this opinion to inclusively represent the inorganic forms of cyanide, i.e. the
undissociated HCN and the dissociated CN�.

Very low levels of cyanide are also produced in the brain as neuromodulators (Cipollone and Visca,
2007). This source is negligible in terms of toxicity.

The CONTAM Panel limited the assessment to plant-derived foods as in terms of CNG content,
occurrence in foodstuffs and consumption, non-plant-derived foods were considered to be a negligible
source of dietary cyanide.

1.3. Additional information

1.3.1. Chemistry

Hydrocyanic acid (hydrogen cyanide or HCN) does virtually not occur in plants as free compound
but ‘hidden’ in so-called CNGs, which allow the plant to store HCN without suffering from its toxicity.

Cyanogenic glycosides

At least 60 different CNGs have been identified in plants (Seigler, 1991). In general, CNGs contain
cyanide (CN) in a chemically fixed state as a cyanohydrin (a-hydroxynitrile) which is stabilised as a
b-glycoside of a monosaccharide like glucose or a disaccharide like gentiobiose (Poulton, 1990; Jones,
1998; Ballhorn, 2011). As an example, the complete chemical structures of the widely occurring
glucoside linamarin and its homologous gentiobioside, linustatin are depicted in Figure 1. In intact
plant cells, CNGs are stored in vacuoles and thereby separated from b-glycosidase enzymes (EC
3.2.1.21) located in plant cell walls. When plant cells are physically destroyed, e.g. by chewing or
grinding, the CNGs come into contact with the b-glycosidase enzymes and are degraded with the
release of HCN. In aqueous biological fluids, free HCN exists in a pH-dependent dissociation
equilibrium with cyanide ions (CN�). The mixture of non-dissociated HCN and cyanide ions is termed
‘cyanide’ (see EFSA CONTAM Panel, 2016).
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The chemical structures and some of the features of typical CNGs are listed in Table 1. The
aglycones of some but not all of the CNGs contain chiral centres, i.e. C-atoms with four different
substituents. Of particular practical importance is the fact that different amounts of CN are released
from different CNGs, because of the different molecular masses. For example, 1 g of linamarin, which
has a relatively low molecular mass, yields almost twice as much HCN compared to 1 g of amygdalin
with a much higher molecular mass. Due to the polar glycoside group, all CNGs are solids with quite
high melting points and a similar solubility, which is much higher in polar solvents like water or ethanol
than in non-polar solvents such as chloroform or benzene.

Figure 1: Chemical structures of linamarin and linustatin
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Table 1: Important cyanogenic glycosides (CNGs) in food plants, arranged according to maximum release of CN (calculated as HCN equivalents)

Chemical structure CAS number Element formula Molecular mass CN (mg/g CNG) Examples for occurrence(a)

554-35-8 C10H17NO6 247.3 109.2 Cassava (Manihot esculenta Crantz)
Lima beans (Phaseolus lunatus L.)

534-67-8 C11H19NO6 261.3 103.3 Cassava (Manihot esculenta Crantz)
Lima beans (Phaseolus lunatus L.)

99-18-3 C14H17NO6 295.3 91.4 Bitter almonds (Prunus amygdalus var. amara Stokes)

499-20-7 C14H17NO7 311.3 86.7 Sorghum (Sorghum bicolor (L.) Moench)

21401-21-8 C14H17NO7 311.3 86.7 Bamboo (Bambusa vulgaris Schrad. and Bambusa edulis Carriere)

72229-40-4 C16H27NO11 409.4 66.0 Linseed (Linum usitatissimum L.)

72229-42-6 C17H29NO11 423.4 63.8 Linseed (Linum usitatissimum L.)

29883-15-6 C20H27NO11 457.4 59.0 Apricot kernels (Prunus armeniaca L.)
Almond kernels (Prunus amygdalus var. dulcis Stokes)

(a): Latin names and names on authors according to ‘The PlantList – a working list of all plant species’ (http://www.theplantlist.org). All relevant synonyms may also be found at this list. Chiral
Catoms in the aglycones (i.e. C-atoms carrying four different substituents) are labelled with the stereochemical descriptors R or S according to the Cahn–Ingold–Prelog system.
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The biosynthesis of CNGs, which is believed to occur in more than 3,000 plant species, follows a
general scheme starting with the cytochrome P450-mediated hydroxylation of an aliphatic or aromatic
amino acid (e.g. valine, isoleucine, phenylalanine, or tyrosine) to an N-hydroxyl amino acid, which is
converted by oxidative decarboxylation to an oxime. Subsequent release of water yields a nitrile.
Another hydroxylation then leads to an a-hydroxynitrile, which is finally stabilised by glycosylation. As
an example, the biosynthesis of linamarin is depicted in Figure 2.

Whereas CNGs are chemically quite stable both under acidic and alkaline conditions, the
intermediate a-hydroxynitriles (cyanohydrins) are only stable in acidic media but spontaneously
dissociate into the respective carbonyl compound and CN at neutral or alkaline pH (Fomunyam et al.,
1985). Thus, if the glycosidic bond is hydrolysed, a process known as cyanogenesis is initiated as
shown in Figure 3 for linamarin (McMahon et al., 1995). The hydrolysis of linamarin to acetone
cyanohydrin and glucose is mediated by the b-glucosidase linamarase (EC 3.2.1.21). The subsequent
conversion of acetone cyanohydrin to acetone and HCN proceeds spontaneously, but is much faster in
the presence of the enzyme hydroxynitrile lyase (EC 4.1.2.37). Complete hydrolysis of 1 g of linamarin
generates 109 mg of HCN (see Table 1).

The process of cyanogenesis is sometimes also called the ‘cyanide bomb’ (Morant et al., 2008).
CNGs and their catabolic enzymes are stored in separate compartments in intact plant cells, but are
brought into contact upon tissue disruption, caused, e.g. by chewing or physical processes such as
maceration or freezing during food processing (Gleadow and Woodrow, 2002).

The strategy of handling CNGs and their catabolic enzymes as a binary system endows plants with
an effective defence against generalist herbivores. Because CNGs protect plants for herbivore attacks,
they are referred to as ‘phytoanticipins’. As an additional role, CNGs are believed to represent a pool of
nitrogen to be used by the plant if needed (Gleadow and Møller, 2014).

The hydrolysis of CNGs to release cyanide can involve various enzymes. With regard to the genuine
glycosidases of the plant tissue, the activity may vary between cultivars (Iglesias et al., 2002). In
addition to the plant enzymes mentioned above, b-glucosidases located in the mammalian intestinal

CYP: cytochrome P450; Glc: glucose; UDP-Glc: uridine diphosphoglucose; UGT: uridine diphosphoglucosyltransferase.

Figure 2: Biosynthesis of linamarin

Glc: glucose; HNL: hydroxynitrile lyase.

Figure 3: Formation of HCN from linamarin
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epithelium and in colonic bacteria appear to play an important role (see Section 3.1.1 on
Toxicokinetics).

Hydrocyanic acid is also named hydrogen cyanide, formonitrile, methanenitrile or prussic acid,
among others. It has the chemical formula HCN, the molecular mass 27.03 g/mol and the Chemical
Abstracts Service (CAS) number 74-90-8. In pure form, it is a colourless liquid with a boiling point of
25.6°C and a melting point of �14°C. Its density is 0.687 g/mL and its vapour pressure is 630 mm Hg
at 20°C. It is completely miscible with water or ethanol. HCN is a very weak acid with a pKa of 9.2 and
a pKb of 4.8, and aqueous solutions of its alkali salts (cyanides) are therefore quite alkaline. HCN
vapours have a characteristic odour like bitter almond oil, but one person out of four does not readily
smell HCN (Brown and Robinette, 1967).

1.3.2. Analytical methods

This chapter does not provide a full list of potential methods to quantify the concentration of CNGs,
cyanohydrins and cyanide (originating from CNGs) in food. Rather, the intention is to identify methods
that are used as the standard methods of analysis.

Quantification of cyanogenic glycosides

The extraction step from food samples is one crucial aspect of any analytical procedure due to the
potential of CNGs for enzymatic degradation and epimerisation (summarised in FAO/WHO, 2012 and
EFSA CONTAM Panel, 2016). High-performance liquid chromatography with UV detection (HPLC-UV) or
with diode-array detection (HPLC-DAD) has been widely applied to quantify CNGs in food samples after
extraction. More recently, solid-phase extraction along with liquid chromatography-tandem mass
spectrometry (LC-MS/MS) analysis has been applied, improving both sensitivity and selectivity of the
analyses. Besides liquid chromatography-based techniques, less frequently gas chromatography-mass
spectrometry (GC-MS) as well as enzyme-linked immunosorbent assays (ELISAs) have been applied to
quantify CNGs in food (FAO/WHO, 2012; EFSA CONTAM Panel, 2016). No validated methods are
available for the quantification of CNGs in food items.

Quantification of total cyanide

Crucial steps in the analysis of total cyanide (cyanide originating from CNGs and cyanohydrins by
complete hydrolysis during sample preparation) in food samples include the sample handling and the
complete hydrolysis of the CNGs. Hydrolysis can be achieved by acid catalysis or enzymatic
degradation. The enzyme used should be ensured to have the CNG in question as accepted substrate.
To ensure that all released CN is retained for analysis, food samples should be incubated with the
enzymes or the diluted acid in sealed containers. Methods of quantifying the released cyanide include
colorimetry, spectrophotometry and chromatography with subsequent detection (FAO/WHO, 2012;
FSANZ, 2014; EFSA CONTAM Panel, 2016). The European Standard EN 16160 of 2012 (EN, 2012)
(HPLC-based measurement) exists for quantification of total cyanide in feed.

1.3.3. Previous risk assessments

In the present section, the term HCN (that corresponds to the term total cyanide used in the
present opinion) has been retained for consistency reasons when as used in previous assessments.

In 2004, the EFSA Panel on Food Additives, Flavourings, Processing Aids and Materials in Contact
with Food (AFC) has published an opinion on hydrocyanic acid in flavourings and other food
ingredients with flavouring properties (EFSA, 2004). In dogs and rats, Median lethal doses (LD50s)
were equivalent to 2.13 and 4.0–6.03 mg CN�/kg body weight (bw), respectively. The lowest lethal
dose identified in humans was 0.56 mg HCN/kg bw. The lethal oral dose of linamarin in rat was
450 mg/kg bw. Based on the limited data available, the AFC Panel could not establish a safe acute
intake level for HCN (i.e. ARfD). The Panel concluded that the epidemiological studies available were
not adequate to establish a No observed adverse effect level (NOAEL) for chronic exposure and that
adequate long-term toxicity studies in animals to derive a NOAEL were lacking. Therefore, a Tolerable
daily intake (TDI) could not be established either. The Panel furthermore concluded that exposure to
cyanide from flavouring ingredients (at the 97.5th percentile 3.6 lg/kg bw per day) was unlikely to
cause acute toxicity in humans. Consumption of either 200 g cassava or 100 g marzipan in 1 day by a
60 kg individual would lead to an intake of 30 lg HCN/kg bw and would not be associated with acute
toxicity.
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In 2012, the Joint FAO/WHO Expert Committee on Food Additives (JECFA) published a risk
assessment of CNGs (FAO/WHO, 2012) in which both toxicity data on CNGs and on HCN were
evaluated. Acute toxicity symptoms upon administration of CNGs and HCN are metabolic acidosis,
decreased cytochrome oxidase activity and respiratory depression. In repeated dose studies with
cyanide, histopathological changes in the nervous system and effects on the thyroid and on
reproduction and development are seen. In humans, long-term consumption of cassava is associated
with konzo,6 tropical ataxic neuropathy7 and also with goitre. The JECFA selected skeletal defects in
hamster foetuses (missing presacral vertebrae, agenesis of 13th rib) seen in a developmental toxicity
study with linamarin (Frakes et al., 1985) as the appropriate endpoint for an acute dose–response
analysis. A benchmark dose lower confidence limit 10% (BMDL10)

8 of 85.26 mg linamarin/kg bw was
calculated and by application of an uncertainty factor (UF) of 100 the Committee established an ARfD
for linamarin of 0.9 mg/kg bw, equivalent to 0.09 mg CN/kg bw. This cyanide equivalent ARfD applies
only to foods containing CNGs as a main source of cyanide. For the chronic dose response analysis,
the JECFA selected adverse effects related to male reproduction (decreased cauda epididymis and
testis weights and decreased testicular spermatid concentration) observed in a 13-week study where
sodium cyanide was given to rats via drinking water [National toxicology programme (NTP), 1993]. A
BMDL1SD

9 of 1.9 mg CN/kg bw per day was calculated to which an UF of 100 was applied resulting in
a Preliminary tolerable daily intake (PMTDI) of 20 lg CN/kg bw. The JECFA decided not to apply an
additional UF to account for the absence of a long-term study, taking into account the acute nature of
cyanide toxicity and the sensitivity of the effect (i.e. the reduction of absolute cauda epididymis
weight).

Using national acute dietary exposure assessments, the ARfD of 0.09 mg/kg body was exceeded
threefold with cassava by adults, less than twofold with apple juice by children, between two- and
fivefold with apricot kernels and up to 10-fold with ready-to-eat cassava chips/crisps depending on the
different population groups. Using national chronic dietary exposure assessments, the PMTDI of
0.02 mg/kg bw was exceeded between one- and threefold in children and between one- and twofold
in children and adults, respectively, that consumed cassava as staple food. Chronic dietary exposure
from flavouring agents did not lead to exceedances of the PMTDI.

In 2014, the Food Standards Australia New Zealand (FSANZ) published a survey of CNGs in plant-
based foods in Australia and New Zealand 2010–2013 that contained an acute and chronic risk
assessment of cyanide (FSANZ, 2014). For the chronic risk characterisation, the JECFA PMTDI of 20 lg
cyanide/kg bw (FAO/WHO, 2012) was used. For the acute risk characterisation, FSANZ used an ARfD
of 80 lg HCN/kg bw. This ARfD was established in a previous risk assessment of FSANZ (2008) based
on the maternal NOAEL of 70 mg/kg bw per day in the developmental study with linamarin in
hamsters, in which at the next higher dose of 100 mg/kg bw per day dyspnoea, hyperpnoea, ataxia,
tremors, hyperthermia was observed (Frakes et al., 1985). This endpoint differs from that used by
JECFA, but the resulting ARfD is similar. Using a consumption size of 32 apricot kernels per day, acute
exposure estimates for adults ranged from 724 to 755 lg HCN/kg bw per day exceeding the ARfD of
80 lg HCN/kg bw per day. High consumption of linseed containing bread led to exposure estimates of
up to 511 lg HCN/kg bw per day thereby exceeding the ARfD of 80 lg HCN/kg bw per day, whereas
high consumption of cassava resulted in exposures at the ARfD. FSANZ concluded that consumption of
raw apricot kernels poses a very severe health risk. Although acute exposures with linseed containing
bread exceeded the ARfD, FSANZ concluded that linseed and foods containing linseed do not represent
an appreciable health risk as there are not reports in the literature of human poisonings upon
consumption of linseed and in a study in which human volunteers consumed 100 g of ground linseed
no cyanide was detected in the blood (Schilcher et al., 1986). Likewise, although consumption of
cassava could lead to exposures reaching the ARfD, FSANZ concluded that, because of the worst-case
assumptions made in the exposure estimates and the absence of adverse effects reported in
individuals consuming properly processed cassava, it is not of concern.

In 2016, the EFSA CONTAM Panel published a scientific opinion on the acute health risks related to
the presence of CNGs in raw apricot kernels and products derived from raw apricot kernels (EFSA

6 An upper motor neuron disease manifested principally as spastic paraplegia, seen in Africa.
7 A syndrome characterized by sensory polyneuropathy, sensory ataxia, bilateral optic atrophy and bilateral sensorineural deafness.
8 The benchmark dose (BMD) is a dose level, estimated from the fitted dose–response curve, associated with a specific change
in response, the benchmark response (BMR). The BMDL is the BMD’s lower confidence bound. In the case of a BMDL10, it is
the lower confidence bound of a specific change in response of > 10%.

9 The BMDL1SD is the lower confidence bound of a specific change in response of > 1 standard deviation (SD).
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CONTAM Panel, 2016). The Panel concluded that amygdalin is the major CNG present in apricot
kernels and is degraded to cyanide by chewing or grinding. The lethal dose of cyanide is reported to
be 0.5–3.5 mg/kg bw. An ARfD for cyanide of 20 lg/kg bw was derived from a study where exposure
to a dose of 0.105 mg/kg bw was associated with a non-toxic blood cyanide level of 20 lM (Abraham
et al., 2016) and applying an UF of 1.5 to account for toxicokinetic and of 3.16 to account for
toxicodynamic interindividual differences. The variations in peak blood levels seen in the study from
Abraham et al. (2016) were small (mean � SD: 20.06 � 3.35 lM in women, 12.17 � 3.19 lM in
men). Therefore, the CONTAM Panel concluded that a default factor of 3.16 was not required and that
a factor of 1.5 was sufficient to cover any additional variability in toxicokinetics.

Since no consumption data were available the Panel used the highest intakes of kernels promoted
(10 and 60 kernels/day for the general population and cancer patients, respectively) for assessing
exposures which exceeded the ARfD 17–413 and 3–71 times in toddlers and adults, respectively. The
quantity of apricot kernels that can be consumed without exceeding the ARfD was estimated to be
0.06 and 0.37 g in toddlers and adults, respectively. The Panel concluded that the ARfD would be
exceeded by consumption of one small kernel in toddlers and by more than three small kernels in
adults or less than half of a large kernel.

1.3.4. Legislation and international standards

Council Regulation (EEC) No 315/9310 stipulates that food containing a contaminant in an amount
unacceptable for public health shall not be placed on the market, that contaminant levels should be
kept as low as can reasonably be achieved and that, if necessary, the European Commission may
establish maximum levels for specific contaminants. These maximum levels are laid down in the Annex
of Commission Regulation (EC) No 1881/200611 and may include limits for the same contaminants in
different foods, analytical detection limits and reference to the sampling and analysis methods to be
used. Commission Regulation (EU) 2017/123712 amending this regulation provides MLs of 20 mg HCN
or HCN bound in CNGs/kg in unprocessed whole, ground, milled, cracked or chopped apricot kernels
placed on the market for the final consumer. These MLs are based on the outcome of the previous
EFSA risk assessment on apricot kernels (EFSA CONTAM Panel, 2016). Regulation (EC) No 1334/200813

governs the use of flavourings and food ingredients with flavouring properties in foods. The regulation
also provides maximum levels of certain substances naturally present in flavourings and food
ingredients with flavouring properties. A maximum level for HCN of 50 mg/kg has been established for
nougat, marzipan or its substitutes or similar products, of 5 mg/kg in canned stone fruits and of
35 mg/kg in alcoholic beverages. Regulation (EC) No 110/200814 governs the definition, description,
presentation, labelling and protection of geographical indications of spirit drinks and establishes a
maximum content of HCN of 7 g/hL of 100% volume alcohol (70 mg/L) in stone fruit marc spirits and
stone fruit spirits.

Directive 2002/32/EC15 provides a maximum content of hydrocyanic acid in feed materials and
complete feeding stuffs of 50 mg/kg (relative to a moisture content of 12%). Exceptions are linseed,
linseed cakes and manioc products/almond cakes for which maximum contents are 250, 350 and
100 mg hydrocyanic acid/kg, respectively, and complete feeding stuffs for chicks which can contain a
maximum of only 10 mg/kg.

The Codex Alimentarius Commission (Codex) has issued several documents regarding the definitions
of cassava food commodities and measures to reduce hazards by cassava consumption. The code of

10 Council Regulation (EEC) No 315/93 of February 1993 laying down Community procedures for contaminants in food. OJ L 37,
13.2.1993, p. 1–5.

11 Regulation (EC) No 1881/2006 of the European Parliament and the Council of 19 December 2006 setting maximum levels for
certain contaminants in foodstuffs. OJ L 364, 20.12.2006, p. 5–24.

12 Commission Regulation (EU) 2017/1237 of 7 July 2017 amending Regulation (EC) No 1881/2006 as regards a maximum level
of hydrocyanic acid in unprocessed whole, ground, milled, cracked, chopped apricot kernels placed on the market for the final
consumer. OJ L177, 8.7.2017, p. 36–38.

13 Regulation (EC) No 1334/2008 of the European Parliament and of the Council of 16 December 2008 on flavourings and certain
food ingredients with flavouring properties for use in and on foods and amending Council Regulation (EEC) No 160/1,
Regulations (EC) No 2232/96 and (EC) No 110/2008 and Directive 2000/13/EC. OJ L 354, 31.12.2008, p. 34–50.

14 Regulation (EC) No 110/2008 of the European Parliament and of the Council of 15 January 2008 on the definition, description,
presentation, labelling and the protection of geographical indications of spirit drinks and repealing Council Regulation (EEC)
No 1576/89. OJ L 39, 13.2.2008, p. 16.

15 Directive 2002/32/EC of the European Parliament and of the Council of 7 May 2002 on undesirable substances in animal feed.
OJ L 140, 30.5.2002, p. 10–21.
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practice for the reduction of hydrocyanic acid (HCN) in cassava and cassava products (CAC/RCP 73-
2013)16 gives guidance on how to produce cassava products with safe concentrations of cyanogenic
compounds and advice in support of reduction of HCN in cassava and lowering uptake of cassava. There
are Codex standards defining gari17 (Codex STAN 151-1989),18 edible cassava flour (Codex STAN 176-
1989),19 sweet cassava (Codex STAN 238-2003)20 and bitter cassava (Codex STAN 300-2010).21 In the
general standard for contaminants and toxins in food and feed (Codex STAN 193-1995),22 MLs of 2 and
10 mg/kg HCN for gari and cassava flour have been set which are based on the risk assessment of CNGs
of JECFA (FAO/WHO, 2012).

2. Data and methodologies

2.1. Collection and appraisal of occurrence, toxicokinetics and toxicity
data collected from public literature

For the previous EFSA opinion on CNGs in raw apricot kernels (EFSA CONTAM Panel, 2016), a
series of previous risk assessments on HCN and CNGs has been collected and evaluated. Any relevant
original studies referenced in these previous risk assessments have been retrieved as a first step. Since
it contained the latest comprehensive EFSA hazard assessment of CN, the opinion of the AFC Panel on
HCN in flavourings and flavouring ingredients (EFSA, 2004) was considered as a starting point for the
previous opinion on CNGs in apricot kernels and a literature search was carried out to retrieve all
relevant studies published after this assessment, i.e. in the years from 2004 to 2015. During the
development of the opinion on CNGs in apricot kernels, additional publications were collected by
applying a ‘forward snowballing approach’.23 In total, 171 original publications were retrieved for the
previous opinion and, where relevant, have been considered also for the present assessment.

While the previous opinion (EFSA CONTAM Panel, 2016) focussed on acute effects of a single food
commodity (i.e. apricot kernels), the present assessment required also collection and evaluation of
information on chronic effects of cyanide and consideration of potentially all cyanogenic foods. The
CONTAM Panel identified the JECFA assessment on cyanide in food (FAO/WHO, 2012), which contained
both an acute and chronic risk evaluation as the most recent comprehensive risk assessment and as a
starting point for the present assessment, as it was assumed that it covered comprehensively all
information/studies on potentially relevant cyanogenic foods at that time. To cover also any further
literature published since then, a literature search on studies on formation, occurrence, processing,
exposure, toxicokinetics, acute and chronic toxicity and epidemiology of cyanogenic foods, CNGs and
CN in the period from 1 January 2012 until 22 June 2017 (the date of the search) was carried out. The
database used was Web of Science24 and references retrieved were managed using Endnote.25 The
search terms used and the results obtained are described in detail in Appendix A. In brief, after
removing duplicates, in total, 640 publications were obtained. Upon screening of their abstracts using
expert judgement, 178 studies were considered as potentially relevant and full text originals were
retrieved for further consideration. During the development of the opinion, it was agreed that with
regard to acute effects of CN and CNGs, the previous JECFA assessment (FAO/WHO, 2012) could not
be used as a starting point for assessing acute effects of CN or CNGs in humans because the ARfD
derived by JECFA was based on a study with linamarin and it could not be excluded that effects are
specific to this CNG and not related entirely to CN. In addition, the JECFA assessment did not include

16 http://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites
%252Fcodex%252FStandards%252FCAC%2BRCP%2B73-2013%252FCXP_073e.pdf

17 Cassava root, dried and ground.
18 http://www.fao.org/fao-who-codexalimentarius/sh-proxy/ru/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites

%252Fcodex%252FStandards%252FCODEX%2BSTAN%2B151-1985%252FCXS_151e.pdf
19 http://www.fao.org/fao-who-codexalimentarius/sh-roxy/ru/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites

%252Fcodex%252FStandards%252FCODEX%2BSTAN%2B176-1989%252FCXS_176e.pdf
20 http://www.fao.org/fao-who-codexalimentarius/sh-proxy/es/?lnk = 1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites

%252Fcodex%252FStandards%252FCODEX%2BSTAN%2B238-2003%252FCXS_238e.pdf
21 http://www.fao.org/fao-who-codexalimentarius/sh-oxy/ru/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites

%252Fcodex %252FStandards%252FCODEX%2BSTAN%2B300-2010%252FCXS_300e.pdf
22 http://www.fao.org/fao-who-codexalimentarius/sh-proxy/fr/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites

%252Fcodex%252FStandards%252FCODEX%2BSTAN%2B193-1995%252FCXS_193e.pdf
23 Identifying articles that have been cited in articles found in a search (see Jalali and Wohlin, 2012).
24 Web of Science (WoS), formally ISI Web of Knowledge, Thomson Reuters. http://thomsonreuters.com/thomson-reuters-web-

of-science/
25 EndNote X5, Thomson Reuters. http://endnote.com/
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an extensive evaluation of individual CN or CNG poisoning cases in humans. Therefore, an additional
search was carried out for publications in this field without setting a time limit, which yielded a total of
1,206 publications. It was agreed that such an amount of publications could not reasonably be
evaluated and also that the older publications might be of lesser relevance as their findings are likely
reflected in later studies and reviews. Therefore, only abstracts from publications from 1970 onwards
(in total 667) were screened of which 60 were considered as relevant and therefore retrieved (for
details on this additional literature search, see Appendix B).

2.2. Occurrence data used for the assessment

The data used for the present scientific report were derived from analytical data submitted by
Member States via a continuous annual call for data. All data were submitted to EFSA according to the
data model ‘Standard sample description version 1’ (SSD1) (EFSA, 2010a) by different data provider
organisations and stored in the EFSA scientific data warehouse (SDWH). The SSD data model contains
different data elements (database fields) and several coded standard terminologies for non-free-text
data elements. The field names and terms mentioned in the present report refer to the SSD1 model.

In the analysis of CN occurrence data, the left-censored data [results below limit of detection (LOD)
or below limit of quantification (LOQ)] were treated by the substitution method as recommended in
the ‘Principles and Methods for the Risk Assessment of Chemicals in Food’ (WHO, 2009). The same
method is indicated in the EFSA scientific report ‘Management of left-censored data in dietary exposure
assessment of chemical substances’ (EFSA, 2010b) as an option in the treatment of left-censored data.
The guidance suggests that the lower bound (LB) and upper bound (UB) approach should be used for
chemicals likely to be present in the food (e.g. naturally occurring contaminants, nutrients and
mycotoxins). The LB is obtained by assigning a value of zero (minimum possible value) to all samples
reported as lower than the LOD (< LOD) or LOQ (< LOQ). The UB is obtained by assigning the
numerical value of LOD to values reported as < LOD and LOQ to values reported as < LOQ (maximum
possible value), depending on whether LOD or LOQ is reported by the laboratory.

In addition to the occurrence data collected from the Member States within the call for data,
analytical data obtained through literature review of CN concentration only in raw cassava sampled in
European countries were used for estimating the maximum amount of raw cassava that can be
consumed without exceeding the ARfD (see Section 3.5 on Risk characterisation).

2.3. Food consumption data

The EFSA Comprehensive European Food Consumption Database (Comprehensive Database)
provides a compilation of existing national information on food consumption at individual level. It was
first built in 2010 (EFSA, 2011; Huybrechts et al., 2011; Merten et al., 2011). Details on how the
Comprehensive Database is used are published in the Guidance of EFSA (EFSA, 2011). The latest
version of the Comprehensive Database updated in 2018 contains results from a total of 60 different
dietary surveys carried out in 25 different Member States covering 119,458 individuals. Within the
dietary studies, subjects are classified in different age classes as follows:

Infants: < 12 months old
Toddlers: ≥ 12 months to < 36 months old
Other children: ≥ 36 months to < 10 years old
Adolescents: ≥ 10 years to < 18 years old
Adults: ≥ 18 years to < 65 years old
Elderly: ≥ 65 years to < 75 years old
Very elderly: ≥ 75 years old

Two additional surveys provided information on specific population groups: ‘Pregnant women’
(≥ 15 years to ≤ 45 years old; Latvia) and ‘Lactating women’ (≥ 28 years to ≤ 39 years old; Greece).
For chronic exposure assessment, food consumption data were available from 44 different dietary
surveys carried out in 22 different European countries. For the acute assessment, recent food
consumption data were available for 43 surveys of 25 countries. In Annex A.1, these dietary surveys
and the number of subjects available for the acute and chronic exposure assessment are described.
The food consumption data gathered by EFSA in the Comprehensive Database are the most complete
and detailed data currently available in the EU. Consumption data were collected using single or
repeated 24- or 48-h dietary recalls or dietary records covering from 3 to 7 days per subject. Because
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of the differences in the methods used for data collection, direct country-to-country comparisons can
be misleading.

2.4. Methodology for exposure assessment

2.4.1. Methodology for acute exposure assessments

Since it was not possible to identify the consumption events of processed products potentially
containing cyanide due to ingredients like almonds, marzipan/persipan and stone fruits (e.g. ‘Pastries
and cookies’, ‘Biscuits’, ‘Fruit juices’), for each of these categories, the CONTAM Panel selected a list of
FoodEx categories that could contain almonds, marzipan/persipan and stone fruits and these foods
were used for the assessment of acute exposure.

Acute dietary exposure to CN originating from foods containing CNGs was estimated using a
probabilistic approach. For calculating acute dietary exposure CN, originating from food containing
CNGs, food consumption and body weight data at the individual level were accessed in the
Comprehensive Database. Only consumption events related to the lowest (most detailed) FoodEx
category levels assumed by the Panel to potentially contain CNGs were used in the assessment of
acute exposure. In addition, the different FoodEx categories were grouped within food groups to
better present their contribution to the total dietary exposure to CN. The complete list of the selected
FoodEx categories and food groups is available in Annex A.2. The acute dietary exposure to CN was
calculated for each reporting day, since individual meals are recorded for only a few countries in the
consumption database. The preferred option is, therefore, to use individual days of consumption. Days
of consumption offer a conservative estimate of the exposure, since it will sum the contribution of all
meals during the same day. Acute exposure was assessed for each reporting day by multiplying the
total consumption amount for each food category by an occurrence level randomly drawn among
individual results available for that food category. Respective intakes of the foods consumed that day
were summed and finally divided by the individual’s body weight. This process was iterated 500 times
for each day of consumption reported by each participant. For the calculations, occurrence data
estimated using the UB and LB approach were used. The 95% confidence interval was defined as the
2.5th and 97.5th percentiles obtained from the 500 iterations. All analyses were run using the SAS
Statistical Software (SAS enterprise guide 5.1®26), including the modelling of the probabilistic acute
exposure.

Due to the lack of occurrence data on cassava and cassava products, the panel decided to perform
a backwards calculation to estimate the maximum amount of fresh raw cassava that can be eaten in
one eating occasion by each age class without the exceeding the ARfD. The highest value reported in
literature for raw cassava purchased in Europe was used for this assessment.

A similar approach was used for linseed, for which the highest occurrence value reported by the
member states and stored in the SDWH was used to calculate the maximum amount of linseed that
can be eaten in one eating occasion by each age class without exceeding the ARfD.

Additionally, backward calculations were carried out for food items for which maximum limits for
HCN exist, such as marzipan or its substitutes or similar products or canned stone fruits (Regulation EC
No 1334/2008), spirits (Regulation EC No 110/2008), gari and cassava flour (Codex STAN 193-1995).
Here, the respective MLs were applied to assess the maximum amount of consume the respective food
that can be consumed in one eating occasion by each age class without exceeding the ARfD.

2.4.2. Methodology for chronic exposure assessment

Since it was not possible to identify the consumption events of processed products potentially
containing cyanide due to ingredients like almonds, marzipan/persipan and stone fruits (e.g. ‘Pastries
and cookies’, ‘Biscuits’, ‘Fruit juices’), for each of these categories, the CONTAM Panel selected a list of
FoodEx categories that could contain almonds, marzipan/persipan and stone fruits and these foods
were used for the assessment of chronic exposure.

As suggested by the EFSA WG on Food Consumption and Exposure (EFSA, 2011), dietary surveys
with only one consumption day per subject were not considered for chronic exposure assessments as
they are not adequate to assess repeated exposure. Similarly, subjects who participated only 1 day in
the dietary studies, when the protocol prescribed more reporting days per individual, were also
excluded for the chronic exposure assessment. Not all countries provided consumption information for

26 https://support.sas.com/resources/papers/proceedings13/138-2013.pdf
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all age groups, and in some cases, the same country provided more than one consumption survey. For
calculating chronic dietary exposure to CN, food consumption and body weight data at the individual
level were accessed in the Comprehensive Database. Only consumption events related to the lowest
(most detailed) FoodEx category levels assumed by the Panel to potentially contain CNGs were used in
the assessment of chronic exposure. In addition, the different FoodEx categories were grouped within
food groups to better present their contribution to the total dietary exposure to CN. The complete list
of the selected FoodEx categories and food groups is available in Annex A.2. The mean and the high
(P95) chronic dietary exposures were calculated by combining total CN mean occurrence values for
food samples collected in different countries (pooled European occurrence data) with the average daily
consumption for each food at individual level in each dietary survey and age class. Consequently,
individual average exposures per day and body weight were obtained for all individuals. On the basis
of distributions of individual exposures, the mean and P95 exposure were calculated per survey and
per age class. Dietary exposure was assessed using overall European LB and UB mean occurrence of
total CN. The contribution (%) of each food category to overall mean dietary chronic exposure of total
CN was calculated for each age group and dietary survey. All analyses were run using the SAS
Statistical Software (SAS enterprise guide 5.1).

2.4.3. Methodology for risk characterisation

The CONTAM Panel applied the general principles of the risk assessment process for chemicals in
food as described by the WHO (2009), which include hazard identification and characterisation,
exposure assessment and risk characterisation. Additionally to the principles described by the WHO
(2009), EFSA guidance pertaining to risk assessment has been applied for the present assessment.
The EFSA guidance covers the procedures currently used within EFSA for the assessment of dietary
exposure to different chemical substances and the uncertainties arising from such assessments. EFSA
guidance documents applied for the present risk assessment are the guidance on uncertainties in
dietary exposure assessment (EFSA, 2007), on transparency in scientific aspects of risk assessments
(EFSA, 2009), on standard sample description for food and feed (EFSA, 2010a), on management of
left-censored data in dietary exposure assessments (EFSA, 2010b), on use of the EFSA comprehensive
food consumption database in intakes assessment (EFSA, 2011), on genotoxicity testing (EFSA
Scientific Committee, 2011), on selected default values to be used in the absence of data (EFSA
Scientific Committee, 2012a) and on risk assessment terminology (EFSA Scientific Committee, 2012b).

3. Assessment

3.1. Hazard identification and characterisation

3.1.1. Toxicokinetics

CNGs present in food items pose a health hazard because they can release cyanide. As defined before
(EFSA CONTAM Panel, 2016), the term ‘cyanide’ comprises both cyanide ions (CN�) and undissociated
hydrogen cyanide (HCN). As described in Section 1.3.1 on Chemistry, CNGs are degraded to cyanide by
b-glycosidase and a-hydroxynitrile lyase, two families of enzymes stored separately from the CNGs in
plant cells. CNGs are typically confined to the vacuoles, whereas b-glycosidases may be present in the
apoplastic space, bound to the cell wall, in the cytoplasm, in small vesicles or in the chloroplast,
depending on the plant species (Gleadow and Møller, 2014). The location of the a-hydroxynitrile lyases is
less well known but appears to be cytoplasmic in the cases studied. The degrading enzymes, which are
quite specific for the CNGs of the respective plant, are brought into contact with the CNG upon
destruction of the intact cells, e.g. by chewing or food processing.

Orally ingested food items derived from cyanogenic plants may contain a mixture of compounds
ranging from the original CNGs, the intermediate cyanohydrin, the released cyanide and carbonyl
compounds (see, e.g. Figure 3 in Section 1.3.1). The components of the ingested mixture can be
absorbed as such or after biotransformation by mammalian or bacterial enzymes present in the
gastrointestinal tract.

The toxicokinetics of cyanide have been well studied because it is an important industrial chemical
as well as a military and environmental toxin. Very low levels of cyanide are also produced in the brain
and are proposed to physiologically act as neuromodulators (Cipollone and Visca, 2007).
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The metabolism of CNGs invariably involves their degradation to cyanohydrins and subsequently
cyanide, but comparatively little is known about the kinetics (absorption, distribution and excretion) of
the parent CNGs (listed in Table 1 in Section 1.3.1 on Chemistry) and their cyanohydrins.

Experimental animals

The toxicokinetics and metabolism of amygdalin and prunasin, which are the predominant CNGs of
apricot kernels, have been discussed in detail in a recent EFSA opinion (EFSA CONTAM Panel, 2016).
Briefly, in vivo and in vitro studies in various animal species suggest that the gentiobioside amygdalin
(see Table 1 in Section 1.3.1) itself is only very poorly absorbed in the gastrointestinal tract, but
hydrolysed to the glucoside prunasin in the jejunum, which is then well absorbed and subsequently
excreted in the urine without releasing much of its cyanide. The jejunal absorption of prunasin is
facilitated by a glucose transporter. The release of cyanide appears to depend on the enzymatic
activity of the gut microflora, most convincingly demonstrated by the observation that rats with an
intact bacterial flora were much more susceptible to the toxicity of amygdalin than germfree rats,
which lack this flora (Carter et al., 1980). Both amygdalin and prunasin were degraded to cyanide by
the contents of rat and hamster caecum, as well as by rumen fluid from cattle, with prunasin being a
better substrate for bacterial degradation than amygdalin (EFSA CONTAM Panel, 2016).

Very limited toxicokinetic studies in experimental animals have been conducted with linamarin, the
major CNG of cassava. When a single dose of 1 mmol of pure linamarin per kg bw was administered
by stomach tube to young Wistar rats, no intact linamarin was found in blood or faeces, but about
20% of the dose was excreted unchanged in the urine, together with 12% of the linamarin dose as
the cyanide metabolite thiocyanate (Barrett et al., 1977). The failure to detect linamarin in blood may
be due to the rather insensitive paper chromatography method used. Maduagwu (1989) administered
four single doses ranging from 0.04 to 1.42 mmol/kg bw intragastrically to young male Wistar rats and
determined the amounts of unchanged linamarin (measured as glycosidic cyanide), liberated (i.e. non-
glycosidic) cyanide and thiocyanate in the 24-h urine. The percentage excreted as linamarin was
independent of the dose and accounted for only about 2%, whereas the percentage of urinary free
cyanide increased from 0.03 to 0.5% and that of thiocyanate from 0.1 to 1% with increasing dose of
linamarin. After intravenous injection of doses of 0.04, 0.20 and 0.40 mmol of linamarin per kg bw,
elimination of glycosidic cyanide from rat blood was observed to occur with a half-life of about 90 min
for all three dose levels (Maduagwu, 1989).

These few animal studies indicate that unchanged linamarin is partly absorbed from the
gastrointestinal tract. As described before (EFSA CONTAM Panel, 2016), partial absorption has also
been observed with prunasin, whereas intact amygdalin appears not to be absorbed. In contrast to
prunasin and linamarin, which are monoglucosides, amygdalin is a diglucoside containing gentiobiose.
For the intestinal absorption of prunasin, involvement of a glucoside carrier has been shown (Wagner
and Galey, 2003), but no corresponding studies have been identified for linamarin. No studies on the
absorption of the other CNGs listed in Table 1 of Section 1.3.1 on Toxicokinetics nor on their respective
cyanohydrins have been identified.

As discussed in more detail in the recent opinion on CNGs in apricot kernels (EFSA CONTAM Panel,
2016), non-dissociated HCN is a small and non-polar molecule which is readily absorbed through the
gastric and intestinal mucosa. In the blood, most of the cyanide is bound to methaemoglobin and
rapidly distributed via the systemic circulation into all tissues. After oral administration of a single dose
of 3.0 mg potassium cyanide (KCN)/kg bw, the half-life of cyanide in blood was 0.64, 0.54 and 1.28 h
in rats, pigs and goats, respectively, and the apparent volume of distribution was about 0.35 L/kg
(Sousa et al., 2003).

Humans

The previous opinion on CNGs in apricot kernels (EFSA CONTAM Panel, 2016) has addressed the
toxicokinetics and metabolism of amygdalin, prunasin and cyanide in humans in detail. For example,
Ames et al. (1981) reported that the ingestion of 1.5 g (3.28 mmol) of pure amygdalin per day for
21 days gave rise to only marginal levels of unchanged amygdalin (peak at 1.1 nmol/mL) in blood
plasma but much higher levels of cyanide (ca. 80 nmol/mL) in whole-blood. This finding is in
agreement with the animal studies discussed above, indicating that intact amygdalin is virtually not
absorbed from the gastrointestinal tract but partially degraded to cyanide, probably by the gut
microflora. In vitro studies using simulated human digestive fluids suggest that degradation of
amygdalin to prunasin may already start in the upper human gastrointestinal tract (Shim and Kwon,
2010). It should be noted that the studies by Ames et al. (1981) and Shim and Kwon (2010) were
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conducted with pure amygdalin in the absence of degrading plant enzymes (see Section 1.3.1 on
Chemistry). The most recent study on the bioavailability of cyanide after ingestion of amygdalin was
conducted by Abraham et al. (2016) in a human volunteer and is also discussed in more detail in EFSA
CONTAM Panel (2016). After ingestion of 120 mg isolated amygdalin containing 6.8 mg cyanide, a
peak cyanide level of 3.4 lM was reached after 60 min, indicating some minor degradation of
amygdalin (by the intestinal flora) occurring in the human body even in the absence of the plant
enzymes. A distinct higher level of 10.0 lM was reached after 30 min when sweet almonds (containing
the degrading plant enzymes but no amygdalin) were ingested together with the same dose of
isolated amygdalin. When 6.8 mg cyanide were ingested as potassium cyanide, a peak cyanide level of
20.1 lM was reached after 15 min, not much higher than the peak levels of 19.5 lM (after 30 min)
and 15.4 lM (after 15 min) observed after ingestion of 62 g unprocessed cassava and 2.1 g apricot
kernels, respectively, both containing the same dose of 6.8 mg cyanide. These results suggest that the
bound cyanide present in cassava and apricot kernels, i.e. in the presence of their plant enzymes, is
almost completely released and bioavailable. In contrast, a lower bioavailability (peak level 6.5 lM
after 60 min) was observed after ingestion of 30.9 g linseed also containing 6.8 mg cyanide. Higher
doses of 60 and 100 g of the same linseed led to an over proportional increase of the peak levels
(19.8 lM after 80 min and 42.3 lM after 160 min, respectively) in this volunteer.

In the study by Abraham et al. (2016), the bioavailability of cyanide was also investigated in a
group of 12 volunteers who ingested apricot kernels (about 2.1 g), unprocessed cassava root
(76–150 g), linseed (30.9 g) and persipan paste27 (100 g), all containing a cyanide amount of 6.8 mg.
Furthermore, the double amount of 200 g persipan was ingested. Results of cyanide peak levels are
compiled in Table 2.

The highest blood peak levels of cyanide were again observed for apricot kernels and for cassava,
indicating a rapid release of a considerable amount of cyanide. The lower peak blood levels of cyanide
observed after linseed as compared to cassava and apricot kernels containing equivalent amounts of
bound cyanide can been explained by the lower activity of the degrading enzymes in linseed, in
particular of the respective b-glucosidase (Schneider et al., 2014; Abraham et al., 2016). The slow
release of cyanide from linseed has also been reported by Schulz et al. (1982). Even lower peak levels
were observed after consumption of 100 g persipan paste, most likely due to heating during the
production process leading to a distinctly reduced activity of the plant b-glucosidase (Abraham et al.,
2016, concentration–time curves are displayed in Appendix C). Several reports are available on the
fate of CNGs from insufficiently processed cassava in various African populations. Brimer and Rosling
(1993) demonstrated for the first time that linamarin is excreted at concentrations of about 200 nmol/mL
in the urine of Mozambican subjects, indicating that the major CNG in cassava may be absorbed from
the human gastrointestinal tract. Likewise, the mean urinary concentration of linamarin was about
100 nmol/mL and that of the cyanide metabolite thiocyanate was ca. 500 nmol/mL in Tanzanian
subjects (Carlsson et al., 1995). Carlsson et al. (1999) concluded from another study conducted in
Tanzania that about one quarter of the linamarin ingested with cassava is excreted unchanged, less
than one-half is converted to cyanide and subsequently thiocyanate and one quarter is metabolised to
an as yet unknown compound. In contrast to the high levels observed by Carlsson et al. (1995) in
Tanzanian subjects eating insufficiently processed cassava, urinary levels of only 14 and 50 nmol/mL of

Table 2: Evaluation of individual cyanide peak blood levels (Cmax) and time to Cmax (tmax) of 12
volunteers after consumption of different foods with relatively high levels of cyanogenic
glycosides (cyanide dose 6.8 mg, but 13.6 mg in case of 200 g persipan)

Food consumed
Cmax

(mean � SD in lM)
Range of
Cmax (lM)

tmax median
(min)

Range of
tmax (min)

Persipan 100 g 1.44 � 0.60 0.61–2.72 105 75–120

Persipan 200 g 3.40 � 2.38 0.78–9.12 150 105–260
Linseed 6.40 � 3.34 1.69–13.85 40 30–60

Apricot kernels 15.46 � 5.12 7.48–22.59 20 5–40

Cassava 16.95 � 5.96 10.31–31.87 30 22.5–52.5

Cmax: maximum concentration achieved in the plasma following dose administration; tmax: the time at which Cmax is attained;
SD: standard deviation.

27 Persipan paste is produced from apricot kernels, sugar and water.
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linamarin and thiocyanate, respectively, were observed in farmers in Malawi eating food prepared from
bitter cassava roots after appropriate processing for detoxification (Chiwona-Karltun et al., 2000).
Similarly, low urinary concentrations of linamarin and thiocyanate were reported for Cuban subjects
eating large amounts of boiled fresh roots of sweet cassava (Hernandez et al., 1995), which has much
lower levels of CNGs than the bitter variety (see Section 3.2 on Occurrence data of total cyanide).

Detoxification of cyanide

The mammalian organism has developed several metabolic pathways for the detoxification of
cyanide which are depicted in Figure 4 (EFSA CONTAM Panel, 2016).

In the presence of a sulfur donor, e.g. thiosulfate, and a sulfur transferase, e.g. rhodanese (see
below), about 70% of a dose of cyanide is metabolised to thiocyanate. In contrast to cyanide,
thiocyanate does not block the electron transport in the mitochondrial respiratory chain. Based on the
oral LD50 in rats, the acute toxicity of thiocyanate is about 100-fold lower than that of cyanide (Bilska-
Wilkosz et al., 2015). Therefore, metabolism to thiocyanate is a detoxification of cyanide. At high
doses, however, thiocyanate has been implicated as a possible aetiologic factor in the alteration of
thyroid function and development of goitre in humans and rats, particularly if organisms are iodine
deficient (Erdogan, 2003; Chandra, 2015). Like several other monovalent anions (e.g. nitrate, bromide
and perchlorate), thiocyanate competes with the uptake of iodide into the thyroid follicle cells via the
sodium iodide symporter (Eisenbrand and Gelbke, 2016). Thiocyanate is transferred from blood into
milk, although levels in human breast milk are only about half of the maternal blood concentrations
(Dorea, 2004). Confounding factors contributing to thiocyanate levels in blood and milk are tobacco
smoke and the degradation of glucosinolates from certain food items. Thyroid disorders due to CNGs
have only been reported in populations eating poorly detoxified cassava in areas of iodine deficiency
and under conditions of insufficient protein nutrition (Dorea, 2004).

In another detoxification pathway, cyanide can react with L-cystine through the putative intermediate
b-thiocyanoalanine to 2-amino-2-thiazoline-4-carboxylic acid (ATCA). This pathway accounts for about
15–20% of cyanide metabolism. Thiocyanate and ATCA are chemically stable metabolites which are not
further metabolised but excreted with the urine. A further detoxification pathway is the reaction of
cyanide with endogenous a-ketoglutarate to form a-ketoglutarate cyanohydrin (a-KGCN). This pathway is
assumed to become important when the thiocyanate and ATCA pathways are overwhelmed. Other minor
pathways, which are of interest primarily as biomarkers for exposure have also been described, e.g. the
reaction with cysteine disulfide groups in serum albumin. In addition to binding to methaemoglobin,
cyanide binds to hydroxocobalamin (vitamin B12b). The complex of cyanide with hydroxocobalamin is
excreted in the urine.

In contrast to the formation of ATCA and a-KGCN, the primary detoxification pathway of cyanide,
i.e. formation of thiocyanate, involves three enzymes. The first enzyme is thiosulfate: cyanide
sulfurtransferase (EC 2.8.1.1), also termed rhodanese, which transfers sulfur from thiosulfate to
cyanide. The second enzyme, i.e. 3-mercaptopyruvate: cyanide sulfurtransferase (EC 2.8.1.2, MPST)
catalyses the transfer of sulfur from 3-mercaptopyruvate to a variety of sulfur acceptors, including

ATCA: 2-amino-2-thiazoline-4-carboxylic acid; a-KG: a-ketoglutarate; a-KGCN: a-ketoglutarate cyanhydrin

Figure 4: Detoxification of cyanide ions (from EFSA CONTAM Panel, 2016)
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sulfite and cyanide. Thereby, MPST not only can provide thiosulfate to rhodanese but also directly
convert cyanide to thiocyanate. 3-Mercaptopyruvate is formed through transamination of cysteine. The
third enzyme, i.e. cystathione c-lyase (EC 4.4.1.1, cystathionase), converts cystine to thiocysteine and
thiocystine, which also serve as sulfane sulfur donor substrates for rhodanese.

Rhodanese is a ubiquitous enzyme present in many tissues of humans and other species, with the
highest activities commonly measured in the liver and kidney, but also in the epithelium of rumen,
omasum and reticulum of sheep and cattle. Within the cell, rhodanese is located predominantly in the
mitochondria. Species differences in rhodanese activity have been reported but cannot be directly
correlated with the sensitivity to cyanide because of the participation of other enzymes and pathways
in cyanide detoxification. Moreover, the availability of sulfur donors is of paramount importance for the
rate of detoxification of cyanide, because both rhodanese and MPST need sulfane sulfur. Indeed, the
availability of sulfur appears to represent the rate-limiting step in the detoxification of cyanide.
According to Schulz et al. (1982), the rate of detoxification of cyanide in healthy humans is only about
1 lg/kg bw per min, which corresponds to about 4.2 mg cyanide per h in a 70 kg person. The major
sulfur donors are the sulfur-containing amino acids cysteine and methionine, which provide the sulfur
to form thiosulfate from sulfite in the cells. Orally administered thiosulfate is very poorly absorbed from
the gastrointestinal tract, and even after intravenous administration remains mostly in the extracellular
space. If the availability of cysteine and methionine in humans is very low, e.g. in situations of
malnutrition, formation of cyanate from cyanide has been observed (Tor-Agbidye et al., 1999).

Summary remarks

To date, only a few studies exist on the toxicokinetics of amygdalin, prunasin and linamarin, and
none on other CNGs. The limited data available suggest that gastrointestinal absorption of the intact
CNG depends on the chemical structure. The release of cyanide depends mostly on the presence and
activity of the respective plant enzymes. The CNGs present in apricot kernels and cassava are more
rapidly degraded to cyanide than the CNGs in linseed and persipan paste. In the former, this leads to a
much faster systemic uptake of cyanide and much higher peak blood and organ levels triggering a
possible toxic effect. Some degradation of CNGs to cyanide appears to be mediated by the intestinal
microflora.

Cyanide is readily absorbed from the gastrointestinal tract, rapidly distributed in the body and
detoxified through several metabolic pathways, predominantly to thiocyanate. Toxic tissue
concentrations of cyanide are to be expected if the rate of absorption exceeds the rate of
detoxification for which the availability of sulfur donors is a limiting factor. In healthy humans, the rate
of detoxification of cyanide is only about 1 lg/kg bw per min, which corresponds to about 4.2 mg
cyanide per h in a 70 kg person (Schulz et al., 1982).

3.1.2. Biomarkers of exposure

Exposure to CNGs could, theoretically, be monitored by either measuring the absorbed parent CNGs
or their common degradation product cyanide and its metabolites in plasma or tissues. Parent CNGs
are only suitable biomarkers if they are absorbed to an appreciable extent, as is the case for linamarin
and prunasin but not amygdalin. No data on the gastrointestinal absorption in humans of the other
CNGs listed in Table 1 in Section 1.3.1 on Chemistry have been identified.

Cyanide in blood

Despite some limitations, cyanide in whole-blood is frequently used as an exposure biomarker for
CNGs. Quantification of cyanide is based on colorimetric reaction followed by spectrophotometric
detection as well as high-performance liquid chromatography-mass spectrometry (HPLC-MS), gas
chromatography-nitrogen phosphorous detection (GC-NPD), gas chromatography-electron capture
detection (GC-ECD) and GC-MS [summarised in Agency for Toxic Substances and Disease Registry
(ATSDR), 2007]. In the literature, there are different opinions concerning the biomaterial (whole-blood,
erythrocytes or plasma) to be preferred for this purpose. Since cyanide exists in blood almost entirely
as HCN, whose half-life in blood is less than 1 h, all steps of storage, sample preparation and the
analytic process itself have to be carried out with caution to minimise the risk of cyanide loss and
falsely low levels. After ingestion of food items containing CNGs, the peak levels of cyanide in whole-
blood, erythrocytes or plasma are used as biomarkers for cyanide-induced acute toxic effects.
Therefore, after ingestion, serial measurements of cyanide in whole-blood have to be taken in order to
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identify the cyanide peak levels serving as a surrogate marker for the peak level of cyanide in tissues
triggering the acute effect of cyanide (Abraham et al., 2016).

Cyanide metabolites and cyanide adducts with serum albumin in serum or plasma

As summarised in EFSA CONTAM Panel (2016), a limited number of papers suggest the cyanide
metabolites thiocyanate in serum or plasma (ATSDR, 2006), ATCA in plasma (Lundquist et al., 1995;
Logue, 2005, 2009; Vinnakota et al., 2012) and a thiocyanate adduct at Cys567 formed by reaction of
cyanide with the C-terminal Cys558Cys567 disulfide bond of human serum albumin (Fasco et al., 2007,
2011) as potential biomarkers for cyanide exposure. Currently, however, there is not sufficient data to
determine if useful correlations exist between these potential biomarkers and the internal exposure to
cyanide levels.

CNGs in urine

Several studies have used the urinary excretion of linamarin as a biomarker to assess the exposure
of certain populations to cassava. For example, Hernandez et al. (1995) showed that the mean levels
of linamarin increased from 2 � 1 to 68 � 16 lmol/L in the urine of adult Cuban men and women
after consumption of 1–4 kg of boiled fresh roots of sweet cassava. In another study, it was shown
that the mean value of urinary linamarin in people from konzo-affected families in Zaire was
significantly higher (632 � 105 lmol/L in konzo patients and 657 � 52 lmol/L in their household
members) than in members of control households (351 � 28 lmol/L) and in unaffected villages
(147 � 18 lmol/L) (Banea-Mayambu et al., 1997).

Thiocyanate in urine

As reviewed in FAO/WHO (2012) for consumers of cassava, higher urinary thiocyanate levels have
been reported as compared with individuals who never consumed cassava. Consumption of varieties of
cassava with low levels of CN as well as frequent or high consumption of cassava, if processed
effectively with reduced levels of CNGs, has been shown to result in low levels of urinary thiocyanate.
Both occupational exposure of people working in cassava processing plants and smoking are well
known to also increase urinary thiocyanate.

Summary remarks

The acute toxicity of cyanide is determined by its peak levels reached in the body, and thus, the
peak cyanide blood concentration (assessed by serial measurements of cyanide in whole-blood after
ingestion) can be used as a reliable biomarker for acute cyanide exposure. The CONTAM
Panel concluded that although the determination of linamarin or other partially absorbed CNGs as well
as their metabolite thiocyanate in urine is useful for comparing different chronic exposure levels, it
cannot provide information on the absolute exposure, because the degree of absorption and the
proportion of the CNG degraded to cyanide in the intestine or colon are not known and because
urinary thiocyanate might be strongly confounded by other factors including smoking.

3.1.3 Toxicity

Animals

This section summarises all data reported in previous assessments (WHO, 2004; FAO/WHO, 2012;
EFSA CONTAM Panel, 2016) relevant for the present opinion in tables and reviews the most recent
manuscripts not included in previous assessments.

For studies reporting only concentrations of compounds in the diet, the applied doses have been
converted to mg/kg bw per day following the respective EFSA or WHO guidance (IPCS, 2009; EFSA
FEEDAP Panel, 2012; EFSA Scientific Committee, 2012a).

Since the potential toxicity of CNGs in food depends on production of cyanide, toxicological data for
cyanide were also reviewed.

Acute toxicity of cyanide

Acute toxicity of cyanides (HCN, NaCN, KCN, Ca(CN)2) is characterised by dyspnoea, ataxia, loss of
consciousness, convulsions, asphyxiation and death in experimental animals. Acute oral LD50s have
been derived from rabbit, rat, mouse and dog and values range from 2.13 to 6 mg CN�/kg bw (for
details, see Table 1 of EFSA CONTAM Panel, 2016).
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Repeated dose toxicity of cyanide

The identified repeated dose toxicity studies for cyanides are summarised in Tables 3 and 4. Data
are organised according to the time of exposure that, among different studies, covers an interval
ranging from 14 days to 11 months. Different species such as rats, mice, rabbits, pigs and goats were
considered. All of them were orally exposed to KCN or NaCN dissolved in the drinking water, provided
with the diet or by gavage. Histopathological alterations have most frequently been observed in the
thyroid (rat, pig and goat), kidney (rat, pig and rabbit), liver (rat, pig, rabbit) and central nervous
system (CNS) (rat and goat), sometimes paralleled with clinical signs.

No deaths have been reported in these repeated dose toxicity studies, although some of the doses
were equal or higher than the respective oral LD50s. The absence of mortality in these studies is
possibly due to the lack of exhaustion of the detoxification activity of rhodanese, which is allowed by
the slower absorption rate following dietary exposure but not after bolus administration as it occurs in
LD50 tests (Hayes, 1967).

For five (Jackson, 1988; NTP, 1993; Sousa et al., 2002; Manzano et al., 2007; Shivanoor and David,
2014) of 15 studies, dose descriptors28 (i.e. NOAEL, Lowest observed adverse effect level (LOAEL) or
BMDL) were available (Table 3).

The CONTAM Panel noted poor reporting of the study design and results in the studies of Manzano
et al. (2007), Jackson (1988) and Sousa et al. (2002). For the Manzano et al. (2007) study,
inconsistencies between methods and results sections regarding the number of animals per
experimental group have been identified. Poor reporting on statistics and inconsistencies in the
reporting of the number of male and female animals are major limitations in the Jackson (1988) study.
Sousa et al. (2002) reported histological lesions in the kidney based on a limited number of animals
per each experimental group (n = 3).

In the 13-week NTP studies (NTP, 1993), left epididymis weight was decreased significantly in male
rats and mice treated with the high dose. Left testis weight was also decreased in high-dose rats.
However, the magnitude of these effects was small (≤ 10%) and therefore, not considered to be
biologically meaningful. Significantly decreased left cauda epididymis weight was observed in rats (all
three dose groups, 13% in the high-dose group) and in mice (high-dose group, 18%). Because of the
lack of precise boundaries between the epididymal corpus and cauda, the gross anatomical dissection
does not allow a precise separation of each epididymal region, and consequently, changes in
epididymal cauda weights are associated with a high level of uncertainty and therefore, not considered
useful for risk assessment. The number of spermatid heads per testis was significantly decreased in
high-dose rats (14%). However, the assessment of the level of spermatogenesis used in the NTP
report is based on a method not well defined nor validated.29 The sperm motility was significantly
lower in rats (all three dose groups); however, the magnitudes were small (2.3–3.8%) and not dose
dependent and therefore, not considered to be biologically relevant. No histopathological changes
were observed in testes or epididymides in rats or mice. The CONTAM Panel concluded that the
findings in the NTP studies cannot be used as a basis to set a point of departure for effects on the
male reproductive system.

In a more recent rat study (Shivanoor and David, 2014), effects on the male reproductive system
were also reported mainly in the high-dose group, i.e. decreased absolute testis, epididymis and
prostate weights; decreased sperm count and motility, sperm abnormality; changes in hormone levels
(FSH, LH, testosterone); and histopathological changes in testis, epididymis and prostate. The
CONTAM Panel noted several inconsistencies in the reporting. Therefore, the CONTAM Panel was not
able to interpret the findings.

28 Dose descriptors (e.g. NOAEL, LOAEL, BMDL) are the points on a dose–response relationship that can be used in a risk
characterisation.

29 Homogenisation of the whole testis (after removing tunica albuginea) in phosphate-buffered saline solution and 10% DMSO
followed by the count (with a hematocytometer) of the nuclei ‘resistant’ to a homogenisation step that was not described in
detail. These nuclei cannot be considered as exclusively coming from spermatid cells as the method is neither sufficiently
standardized nor sufficiently supported by cytology to allow discrimination of the stage of the spermatogenesis of the cellular
nuclei detected.
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Table 3: Summary on repeated dose toxicity of cyanide salts with dose effect descriptors

Compound Animals Exposure CN� equivalents Findings Dose descriptors(a) Reference

KCN Wistar rat, male,
n = 6–10 per
group

Drinking water, 0.0, 0.3, 0.9,
3.0 and 9.0 mg/kg bw per
day, 15 days

0.0, 0.12, 0.36, 1.2 and
3.6 mg/kg bw per day

Histopathology: kidney (congestion
and cytoplasmic vacuolisation of
the epithelial cells of the proximal
tubules); liver: (hepatocytes
degeneration); thyroid: (increased
number of reabsorption vacuoles);
increased plasma thiocyanate

NOAEL: 0.36 mg CN�/kg
bw per day
LOAEL: 1.2 mg CN�/kg bw
per day based on moderate
kidney vacuolisation and
congestion

Sousa et al.
(2002)

KCN Pig, Landrace-
Large White,
45 days old,
n = 5 or 10 per
group

Diet, 0, 2, 4 and 6 mg/kg
bw per day, 10 weeks

0.0, 0.8, 1.6 and 2.4 mg/kg
bw per day

Decreased ALT (≥ 0.8 mg/kg bw
per day), increased urea and
creatinine (1.6 and 2.4 mg/kg bw
per day), thyroid weight (2.4 mg/
kg bw per day). Dose-dependent
histopathological changes(b) of
thyroid (vacuoles in the colloid of
thyroid follicles), liver (karyolysis
and pyknosis in hepatocytes) and
kidney (degeneration of renal
tubular epithelial cells). T3 and T4
were not altered

LOAEL: 2.4 mg CN�/kg
bw per day based on
increased thyroid weight

Manzano
et al. (2007)

NaCN Mouse, male and
female, B6C3F1,
n = 10 per
group and sex

Drinking water, males: 0.0,
0.5, 1.8, 5.1, 16.2 and
45.9 mg/kg bw per day,
13 weeks

Females: 0.0, 0.6, 2.1, 6.2,
19.1 and 54.3 mg/kg bw per
day, 13 weeks

Males: 0.0, 0.27, 0.96, 2.71,
8.60 and 24.37 mg/kg bw
per day

Females: 0.0, 0.32, 1.11,
3.29, 10.14 and 28.83 mg/
kg bw per day

Decreased relative weight of the
epididymis and cauda epididymis

LOAEL: 8.6 mg CN�/kg
bw per day based on
decreased relative weight of
the epididymis and cauda
epididymis in males
No treatment-related effects
in females

NTP (1993)

NaCN Rat, male and
female, F344/N,
n = 10 per
group and sex

Drinking water, males: 0.0,
0.3, 0.9, 2.7, 8.5 and
23.6 mg/kg bw, 13 weeks

Females: 0.0, 0.3, 1.0, 3.2,
9.2 and 23.5 mg/kg bw per
day, 13 weeks

Males: 0.0, 0.16, 0.48, 1.44,
4.51 and 12.5 mg/kg bw per
day

Females: 0.0, 0.16, 0.0,
0.53, 1.70, 4.88 and
12.5 mg/kg bw per day

Dose-dependent reduction in
cauda epididymis weight
(> 1.44 mg CN�/kg bw per day),
reduced number of spermatid
heads per testis and spermatid
count (at 12.5 mg CN�/kg bw per
day), oestrous cycle variation
(from 4.9 mg CN�/kg bw per day
onwards); increased urine
thiocyanate (from 0.48 mg CN�/kg
bw per day onwards)

LOAEL: 1.44 mg CN�/kg
bw per day, based on
reduction in absolute (set by
NTP, 1993) and relative (set
by US EPA, 2010) cauda
epididymis weight
BMDL1SD

(c): 1.9 mg CN�/kg
bw per day based on
decreased absolute cauda
epididymis weight (as
derived in FAO/WHO, 2012)

NTP (1993)
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Compound Animals Exposure CN� equivalents Findings Dose descriptors(a) Reference

NaCN Rat, male,
Wistar albino,
n = 7 per group

Gavage: 0, 0.64, 1.2 and
3.2 mg/kg bw per day,
90 days

0, 0.34, 0.64 and 1.7 mg/kg
bw per day

Decreased body weight gain
(1.7 mg CN�/kg bw per day),
decreased testis and prostate
weight (0.64 mg CN�/kg bw per
day), decreased epididymis weight
(1.7 mg CN�/kg bw per day),
decreased sperm count and
motility (0.64 mg CN�/kg bw per
day) and increased sperm
abnormality (1.7 mg CN�/kg bw
per day), decreased follicle-
stimulating hormone (1.7 mg CN�/
kg bw per day), decreased
luteinising hormone and
testosterone (0.64 mg CN�/kg bw
per day). Histopathology: Testis
(atrophy, degenerated
seminiferous tubules, cell debris in
the lumina), epididymis
(vacuolisation in the laminar cell
layer, low sperm density), prostate
(decreased secretion,
desquamation of the glandular
epithelium)

NOAEL: 0.34 mg CN�/kg bw
per day
LOAEL: 0.64 mg CN�/kg bw
per day based on reduced
sperm count and motility

Shivanoor
and David
(2014)

KCN Mini-pig,
5 weeks old,
n = 3 per group

Diet, 24 weeks 0.0, 0.4, 0.7 and 1.2 mg/kg
bw per day

Decreased T3 and T4 and
behavioural changes (1.2 mg CN�/
kg bw)

NOAEL: 0.7 CN�/kg bw per
day
LOAEL: 1.2 CN�/kg bw per
day
Both based on decrease in
T3 and T4 and behavioural
changes

Jackson
(1988)

ALT: alanine aminotransferase; BMDL: Benchmark dose lower confidence limit; bw: body weight; LOAEL: lowest observed adverse effect level; n: number; NOAEL: no observed adverse effect level;
T3: triiodothyronine; T4: thyroxine.
(a): Dose descriptors (e.g. NOAEL, LOAEL, BMDL as identified by the CONTAM Panel) are the points on a dose–response relationship that can be used in a risk characterisation.
(b): Neither incidence nor statistical analysis of histological lesions was reported.
(c): The BMDL (benchmark dose lower confidence limit) for a BMR (benchmark dose response) of one standard deviation of control mean. Lower end of a BMDL1SD: 1.9–5.6 mg CN�/kg bw per

day range.
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Table 4: Summary on repeated dose toxicity of cyanides without dose descriptors(a)

Compound Animals Exposure CN� equivalents Findings Reference

KCN Rat, male, strain not
specified, n = 10–24
per group

Diet, 0.0 or 0.2% (2 g/kg),
14 days

0 and 800 mg/kg feed,
equivalent to 96 mg/kg bw
per day(d)

Increased thyroid weight and TSH serum levels Kreutler et al.
(1978)

KCN Wistar rat, female,
n = 6 to 3 per group

Gavage, 0 or 7 mg/kg bw per day,
14 days

0.0 and 2.8 mg/kg bw per
day

Increased serum thiocyanate and blood glucose,
decreased ALT, cytochrome c inhibition, hepatic
rhodanese inhibition; histopathology of CNS
(demyelination in medulla oblongata and
chromatolysis, degeneration of cerebrocortical cells),
liver (vacuolar degeneration of hepatocytes), heart
(focal myocardia degeneration) and kidney
(glomerular congestion, tubular lesions)

Tulsawani
et al. (2005)

KCN Sprague-Dawley rat,
male, n = 7 per group

Drinking water, 0 or 200 mg/L,
21 days

0 or 80 mg/L, equivalent to
24 mg/kg bw per day(d)

Increased liver weight Palmer and
Olson (1979)

KCN Boer-Spanish goat,
female, 10 months
old, n = 4 per group

Gavage or diet, 0 or 2.5 mg/kg bw
KCN equivalent dose per day,
30 days

0.0 or 2.4 mg/kg bw per day Convulsion (1/4 animals, given diet, on day 6),
histological lesions in the thyroid and in the
mesencephalon (spongiosis and spheroids)

Soto-Blanco
et al. (2008)

KCN Wistar rat, male, n = 6
–7 per group

Gavage, 0.0, 0.15, 0.3 and
0.6 mg/kg bw per day, 12 weeks

0.0, 0.06, 0.12 and
0.24 mg/kg bw per day(b)

Dose-related histopathological changes of spinal cord
(spheroid bodies on white matter), neuronal loss in
the hippocampus and cerebellum (damaged Purkinje
cells, loss of white matter)

Soto-Blanco
et al. (2002)

KCN Rat, male Drinking water, 0, 40, 80 and
160 mg/kg bw per day, 13 weeks

0, 16, 32 and 64 mg/kg bw
per day

Increased proteinuria, dose-dependent increase
relative organ weight, reduced thymus weight
(160 mg/kg bw)

Leuschner
and Neumann
(1989)

KCN Wistar rat, male and
female, n = 10 per
group

Gavage, 0 or 1.4 mg/kg bw per
day, 13 weeks

0.0 or 0.56 mg/kg bw per
day

Decreased motor coordination, oxidative damage
(liver and brain), histopathology of liver
(microgranuloma, spotty necrosis, moderate portal
inflammation)

Mathangi
et al. (2011)

KCN Alpine-Saanen goat,
30–45 days old, n = 6
–8 per group

Milk (for 3 months) then drinking
water (for 2 months), 0.0, 0.3,
0.6, 1.2 and 3 mg/kg bw per day

0.0, 0.12, 0.24, 0.48 and
1.2 mg/kg bw per day

Muscular tremors and ataxia (1/8, at highest dose),
congestion, haemorrhage and gliosis in cerebellum,
pons and spinal cord and spheroids on the grey
matter of the spinal cord (at two highest doses)(b);
Damage and loss of Purkinje cells in the cerebellum,
spongiosis in the pons and spheroids, axonal
swelling, gliosis, spongiosis and ghost cells in the
medulla oblongata (high-dose group)

Soto-Blanco
et al. (2002)
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Compound Animals Exposure CN� equivalents Findings Reference

KCN New Zealand rabbit,
male, n = 6 per group

Diet, cyanide control diet 9 ppm,
KCN-enriched diet: 702 mg/kg
10 months

0.2 and 20 mg/kg bw per
day

Decrease body weight and feed efficiency (20 mg/kg
bw), increased clinical chemical (serum) parameters,
ALP reduced in lung, increased LDH activity in liver
and kidney, histopathology of liver (focal areas of
hepatic necrosis, congestion), kidney (tubular and
glomerular necrosis) and lungs (focal pulmonary
oedema and necrosis)

Okolie and
Osagie (1999,
2000)

KCN Rat, strain not
specified, male
weanlings (43 g bw),
n = 6 per group

0 or 1,500 mg/kg feed, 4 and
11 months

0 or 44 mg/kg day,(c)

equivalent to 75 mg/kg bw
per day(d)

Decreased bw, reduced plasma thyroxine (only
4 months), 11 months: increased relative thyroid
weight, histopathology of spinal cord (vacuolisation
of the white matter); reduced cyanide metabolism
into thiocyanate

Philbrick et al.
(1979)

ALP: alkaline phosphatase; ALT: alanine aminotransferase; bw: body weight; CNS: central nervous system; LDH: lactate dehydrogenase; n: number; TSH; thyroid-stimulating hormone.
(a): Dose descriptors (e.g. NOAEL, LOAEL, BMDL as identified by the CONTAM Panel) are the points on a dose–response relationship that can be used in a risk characterisation.
(b): NOAEL and LOAEL cannot be derived due to approximate description of histopathological changes.
(c): Based on the average food intake across rat strain and adjusting for molecular weight ratio of cyanide to potassium cyanide (US EPA, 2010).
(d): Calculated using default values provided in IPCS (2009), EFSA Scientific Committee (2012a), EFSA FEEDAP Panel (2012)).
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Acute toxicity of individual cyanogenic glycosides (CNGs)

Acute toxicity of CNGs depends on the release of cyanide and its subsequent absorption. It is
characterised by arrhythmias, ataxia, convulsions, lethargy, decreased respiratory rate and death
(Tables 5 and 6). Acute oral LD50s of prunasin, amygdalin and linamarin have been derived from rats
and range from 450 to 880 mg/kg bw. LD50s expressed as equivalents of CN� range from 29.6 to
51.0 mg CN�/kg bw (Table 5). The slow and incomplete release of cyanide from CNGs explains the
lower acute toxicity as compared to cyanide (EFSA, 2004; EFSA CONTAM Panel, 2016).

Additional studies reporting acute toxicity and death induced by CNGs, without deriving LD50, are
summarised in Table 6.

No studies on acute toxicity of foods containing CNGs were identified by the CONTAM Panel.

Cyanogenic glycosides in food

www.efsa.europa.eu/efsajournal 29 EFSA Journal 2019;17(4):5662



Table 5: Median lethal doses (LD50s) of cyanogenic glycosides

Compound Animals Exposure CN� equivalents LD50s Reference

Linamarin Rat, strain and sex not specified,
n = not specified

Gavage, variable, single Not reported LD50: 450 mg/kg bw
LD50: 47.3 CN� mg/kg bw(a)

Oke (1979)

Amygdalin Fischer 344 rat, female, n = 5–20
per group

Gavage, 0 and < 400–
1,100 mg/kg bw, single

0.0 and 22.7–62.4 mg/kg bw(a) LD50: 522 mg/kg bw
LD50: 29.6 CN� mg/kg bw(a)

Newton et al. (1981)

Amygdalin Wistar rat, n = 20 for LD50 Gavage, 0 and 600–
1,400 mg/kg bw, single

0.0 and 34–79.4 mg/kg bw(a) LD50: 880 mg/kg bw
LD50: 49.9 CN� mg/kg bw(a)

Adewusi and Oke
(1985)

Prulaurasin(b)

(95% pure)
Wistar rat, male, n = 6 per group Gavage, 0 and 300–

1,000 mg/kg bw, single
0.0 and 27.3–91 mg/kg bw(a) LD50: 560 mg/kg bw

LD50: 51.0 CN� mg/kg bw(a)
Sakata et al. (1987)

LD50: (median lethal dose); n: number.
(a): Calculated considering 1,000 mg prunasin equivalent to 87.98 mg CN�; 1,000 mg amygdalin equivalent to 56.7 mg CN�; 1,000 mg linamarin equivalent to 105.2 mg CN� (see FAO/WHO,

2012).
(b): Prulaurasin (D,L-Mandelonitrile-b-D-glucoside) is a mixture of prunasin and sambunigrin.

Table 6: Summary on acute toxicity of cyanogenic glycosides

Compound Animals Exposure CN� equivalents Findings Reference

Linamarin Wistar rat, male,
n = 12

Gavage, 0 and
500 mg/kg bw, single

0.0 and 52.6 mg/kg
bw(a)

Cardiac arrhythmias, ataxia, respiratory
changes, death

Philbrick et al. (1977)

Amygdalin (approx.
99% pure)

Sprague-Dawley rat,
n = 25

Oral, 600 mg/kg bw,
single (no control)

34 mg/kg bw(a) Lethargy, convulsion and death (12 of 25
animals); increased blood concentration of
cyanide and thiocyanate

Carter et al. (1980)

Linamarin Wistar rat, male, n = 9 Gavage, 0, 250 or
500 mg/kg bw, single

0, 26.3 and 52.6
mg/kg bw(a)

Metabolic acidosis, decreased cytochrome
oxidase activity, atrial fibrillation, decreased
respiratory rates, death (500 mg/kg)

Philbrick et al. (1981)

Amygdalin (99% pure) Golden Syrian hamster,
female, n = 20

Gavage, 201 mg/kg
bw, single (no control)

11.4 mg/kg bw(a) Symptoms of cyanide poisoning, 20% mortality
rate; increased blood cyanide and thiocyanate

Frakes et al. (1986)

Linamarin (> 95% pure) Golden Syrian hamster,
female, n = 22

Gavage, 108 mg/kg
bw, single (no control)

11.36 mg/kg bw(a) Symptoms of cyanide poisoning, 18% mortality
rate; increased blood cyanide and thiocyanate

Frakes et al. (1986)

n: number; bw: body weight.
(a): Calculated considering 1,000 mg amygdalin equivalent to 56.7 mg CN�; 1,000 mg linamarin equivalent to 105.2 mg CN� (see FAO/WHO, 2012).
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Repeated dose toxicity of individual CNGs and foods containing CNGs

For individual CNGs, the only repeated dose toxicity studies identified were carried out with
linamarin and amygdalin (Table 7). In all three studies, only one dose level was used and effects on
haematology and clinical chemistry parameters were observed.

Repeated dose toxicity studies with foods containing CNGs have been extensively reviewed in
FAO/WHO (2012) and are summarised in Table 8. A study performed on dogs fed a cassava or NaCN-
containing diet (Kamalu, 1993) has been excluded because of the potential impact of the parallel
treatment of the animals with ecto- and endoparasites. Rivadeneyra-Dom�ınguez et al. (2013)
administered intraoesophageally linamarin in cassava juice (0.075–0.3 mg/kg bw) to male Wistar rats
once a day for 28 days and observed dose and time-dependent increases in locomotor activity and
uncoordinated behaviour. In the applied cassava juice, linamarin was quantified by HPLC-UV, no other CN
containing molecules or total CN were assessed. Since the presence of other CNG-releasing compounds
as well as CNG degradation products cannot be excluded, the CONTAM Panel decided that this study
cannot be used to for risk assessment.

Histopathologic lesions in kidney, liver, pancreas, myocardium and behavioural changes were
observed upon repeated dose exposure to CNGs producing foods and products thereof (Table 8).
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Table 7: Summary on repeated dose toxicity of cyanogenic glycosides

Compound Animals Exposure CN� equivalents Findings Reference

Amygdalin
(Laetrile)
≥ 97%(a)

Duncan-Hartley Guinea
pig, n = not reported

0 or 10 mg in 10% sucrose
solution per day, 24 days

0.0 or 0.57 mg/kg(b) equivalent to
0.44 mg/kg bw per day(c)

No effect on body weight and liver Basu (1983)

Linamarin Wistar rat, male, n = 6 Gavage, 0 or 94 mg/kg bw per
day, 5 weeks

0.0 or 9.89 mg/kg bw(b) Reduced blood systolic pressure, cardiac
cytochrome oxidase activity, increased LDH/
pyruvate ratio

Philbrick et al.
(1977)

Amygdalin
≥ 97%(b)

Rat, male, n = 8 Gavage, 0 or 20 mg/kg bw per
day, 14 weeks

0.0 or 1.13 mg/kg bw(b) Increased haemoglobin concentration,
packed cell volume and serum lactate,
decrease in blood pH

Oyewole and
Olayinka
(2009)

LDH: lactate dehydrogenase; bw: body weight; n: number.
(a): Amygdalin was purchased from Sigma-Aldrich, purity derived from the commercial catalogue. Sigma uses the term laetrile as a synonym for amygdalin which is not correct.
(b): Calculated considering 1,000 mg amygdalin equivalent to 56.7 mg CN�; 1,000 mg linamarin equivalent to 105.2 mg CN�.
(c): Calculated using default values provided in IPCS (2009), EFSA Scientific Committee (2012a), EFSA FEEDAP Panel (2012).

Table 8: Summary of repeated dose toxicity of foods containing cyanogenic glycosides

Food Animals Exposure CN� equivalents Findings Reference

Gari Dog, male,
n = 6

Diet, control with rice or with
cassava, estimated release of HCN
10 mg/kg cooked food; 100 g diet
per day, 1.08 mg/kg bw HCN per
day,(a) 14 days

1.04 mg/kg bw per day Proteinuria, histopathology of kidney (congestion,
vacuolisation, swelling and rupture of proximal tubules
epithelial cells), liver (congestion, periportal vacuolation)
and myocardium (haemorrhage, pyknotic nuclei, fibre
muscle swelling). Increased plasma thiocyanate.

Kamalu
(1993)

Cassava Wistar rat,
male, n = 10

Diet, normal rat feed or 75% fresh
cassava root, 30 days

8–10 mg/kg, equivalent to
1.0–1.2 mg/kg bw per day(b)

Behavioural changes (open field) and decreased
catecholamine in the hypothalamus

Mathangi and
Namasivayam
(2000)

Cassava Sprague-
Dawley rat,
male, n = 6

Diet, cassava free or 71% boiled
cassava, ad libitum, 60 days

7–9 mg/kg, equivalent to
0.8–1.1 mg/kg bw per day(b)

Increased hepatic rhodanese; serum thiocyanate and
blood cyanide

Boby and
Indira (2004)

Cassava Wistar rat,
male and
female, n = 10
per group

Diet, normal rat chow, 50% (I) or
75% (II) fresh cassava, 1 year

Diet I = 0.075 mg per animal per
day
Diet II = 0.102 mg per animal per
day equivalent to approx. 0.0075
and 0.01 mg/kg bw per day(b)

Serum insulin (only diet II), histopathology of pancreas
mild atrophy of the acini, minimal focal dilatation of
ducts (only diet III) and liver (hyperplasia,
microvascular changes in hepatocytes), decreased body
weight, motor incoordination

Mathangi
et al. (1999);
Mathangi and
Namasivayam
(2000)

n: number; bw: body weight.
(a): HCN dose reported by IPCS (2004); 1,000 mg linamarin equivalent to 105.2 mg CN�.
(b): Calculated using default values provided in IPCS (2009), EFSA Scientific Committee (2012a), EFSA FEEDAP Panel (2012).
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Developmental toxicity of cyanide, individual CNGs and foods containing CNGs

Tables 9–12 summarise developmental toxicity studies with cyanide, CNGs or foods containing
CNGs. Animals were exposed via the diet, drinking water or by gavage either at gestation day (GD) 8
(Willhite, 1982; Frakes et al., 1985; see Table 10) or during GD6-GD20 according to standardised
protocols (de Sousa et al., 2007, see Table 9; Soto-Blanco and Gorniak, 2004, see Table 11; Frakes
et al., 1986, see Table 12) or during gestation to postnatal day (PND) 50 (Malomo et al., 2004, see
Table 9; Imosemi et al., 2005, see Table 11). Tewe and Maner (1981) fed rat dams and pups for 49
and 28 days, respectively.

Notably, in five of eight studies, effects in pups have been reported at KCN or CNG doses also toxic
to dams (histopathological alterations, ataxia, convulsions and hypoxia), and in consequence, it cannot
be excluded that these effects are secondary to maternal toxicity and thus are not specific to
development.

Exposed litters mostly display damaged CNS and/or skeletal malformations both after exposure to
KCN or CNGs.

The results of four of eight studies allowed derivation of dose descriptors for KCN, amygdalin and
linamarin (see Tables 9 and 10). LOAELs in the respective studies range from 8.9 mg CN�/kg bw to
20 mg CN�/kg bw. The JECFA selected skeletal defects in hamster foetuses seen in a developmental
toxicity study with linamarin (Frakes et al., 1985) as the appropriate endpoint for an acute dose–
response analysis (see Section 1.3.3 on previous risk assessments).

Cyanogenic glycosides in food

www.efsa.europa.eu/efsajournal 33 EFSA Journal 2019;17(4):5662



Table 9: Summary on developmental studies of cyanides providing dose descriptors

Compound Animals Exposure CN� equivalents Findings Dose descriptors(a) Reference

KCN Wistar rat, n = 10
dams per group; 40
foetuses over 10 L

Drinking water, 0.0
1.0, 3.0 and
30 mg/kg bw per
day, GD6 to GD20

0.0 0.4, 1.2 and
12 mg/kg bw
per day

Dams (GD20): increased glucose; increased
serum thiocyanate Dams (GD20) and litter
(PND21): histopathology of liver (congestion,
microvesicular vacuolisation of hepatocytes) and
CNS (focal neuronal necrosis, focal nodular gliosis,
mild congestion and white matter vacuolisation in
the cerebellum) at 12 mg/kg bw per day

NOAEL: 1.2 mg/kg bw
per day
LOAEL: 12 mg/kg bw per
day
Based on histological
alterations both in dams
and PND21 litter

de Sousa
et al. (2007)

KCN Wistar rat, dams
n = 20; offspring
n = 5

Diet, 0 or 500 mg/
kg feed per day,
gestation to PND50

0 or 20 mg/kg
bw(b) per day

Litter: altered cerebellar development LOAEL: 20 mg/kg bw(c)

per day based on altered
maturation of cerebellum

Malomo et al.
(2004)

bw: body weight; CNS: central nervous system; GD: gestation day; LOAEL: lowest observed adverse effect level; n: number; NOAEL: no observed adverse effect level; PND: post-natal day.
(a): Dose descriptors (e.g. NOAEL, LOAEL, BMDL as identified by the CONTAM Panel) are the points on a dose–response relationship that can be used in a risk characterisation.
(b): Calculated by FAO/WHO (2012).

Table 10: Summary on developmental studies of cyanogenic glycosides providing dose descriptors

Compound Animals Exposure CN� equivalents Findings Dose descriptors(a) Reference

D,L-
Amygdalin

Golden Syrian
hamster, dams
n = 5–12 per
group, foetuses
n = 66–100

Gavage, 0, 200,
225, 250 and
275 mg/kg bw,
single, GD8

0.0, 11.3, 12.8,
14.2 and 15.6
mg/kg bw(b)

Respiratory effects, ataxia and
convulsion in mothers (≥ 14.2 mg CN�/
kg bw)
Dose-dependent foetus malformation
(≥ 14.2 mg CN�/kg bw) at GD14

NOAEL: 225 mg amygdalin/kg bw
or 12.8 mg CN�/kg bw(b)

LOAEL: 250 mg amygdalin/kg bw
or 14.2 mg CN�/kg bw(b) based on
foetal abnormalities

Willhite
(1982)

Linamarin
95% pure

Golden Syrian
hamster, dams
n = 10–13, foetuses
n = 54–67 over 11
to 8 L

Gavage, 0, 70, 100,
120 and 140 mg/kg
bw, single, GD8

0.0, 7.4, 10.5, 12.6
and 14.7 mg/kg
bw(b)

Dams: reversible dose-dependent
dyspnoea, ataxia, tremors and hypoxia
starting from 10.5 mg CN�/kg bw, death
(1/11 at 120 mg/kg bw per day; 2/13
140 mg/kg bw per day)
Dose-dependent increase in foetal
skeletal defects at GD15
No differences in litter with prenatal
deaths, number of live foetuses per litter
and foetal body weight

NOAEL: 70 mg linamarin/kg bw or
7.4 mg CN�/kg bw(b)

LOAEL: 100 mg linamarin/kg bw
per day or 10.5 mg CN�/kg bw
per day(b) based on foetal skeletal
defects
BMDL10: 85 mg linamarin/kg bw
per day or 8.9 mg CN�/kg bw per
day(b) based on foetal skeletal
defects

Frakes et al.
(1985)

bw: body weight; BMDL10: 90th percentile benchmark dose lower confidence limit; GD: gestation day; GD: gestation day; NOAEL: No observed adverse effect level; LOAEL: Lowest observed
adverse effect level.
(a): Dose descriptors (e.g. NOAEL, LOAEL, BMDL as identified by the CONTAM Panel) are the points on a dose–response relationship that can be used in a risk characterisation.
(b): 1,000 mg amygdalin is equivalent to 56.7 mg CN�; 1,000 mg linamarin is equivalent to 105.2 mg CN�.
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Table 11: Other developmental studies with cyanide without dose descriptors(a)

Compound Animals Exposure CN� equivalents Findings Reference

KCN Goat, 1–3 years
old, n = 8 to 4 per
group

Gavage, 0, 1, 2 and 3 mg/kg bw
per day, 24 GD to parturition

0, 0.4, 0.8 and
1.2 mg/kg bw per
day(b)

Dams (highest dose): ataxia, convulsions (2/8); abortion
(1/8); elevated T3 levels at day 1 returned to control at day
8; vacuoles in thyroid follicular colloid, cerebral spongiosis,
cerebellar myelin oedema at 120 day of pregnancy (1/1), no
histopathological lesions 3 months after delivery (1/1). Litter:
(highest dose): 2 prognata born, 1 prognata aborted;
elevated T3 levels at day 1 returned to control at day 8

Soto-Blanco
and Gorniak
(2004)

HCN Rat Diet, cassava+dietary component
to provide HCN 12 mg/kg diet,
49 days dams and 28 days pups

11.5 mg/kg diet per
day, equivalent to
0.115 mg/kg bw
per day(c)

Pre-weaning period: increased serum thiocyanate; post-
weaning period: increased serum thiocyanate, reduced feed
consumption and daily growth; Dams: gestation and lactation
performances not affected

Tewe and
Maner
(1981)

KCN Wistar rat, dams
n = 20, offspring
n = 5

Diet, 0 or 500 mg/kg feed per day,
gestation to PND50

0 or 20 mg/kg bw
per day(b)

Dams: aggressive and restless behaviour; Litter (PND1 to 50):
reduction of body, brain (PND9 and 14) and cerebellar
(PND14, 21, 28) weight, reduced vermal length (PND50)
reduced cerebellum (PND28)

Imosemi
et al. (2005)

bw: body weight; GD: Gestation day; n: number; PND: Postnatal day; T3: Triiodothyronine.
(a): Dose descriptors (e.g. NOAEL, LOAEL, BMDL as identified by the CONTAM Panel) are the points on a dose–response relationship that can be used in a risk characterisation.
(b): FAO/WHO could not identify a LOAEL due to the lack of incidence and severity data of histological effects.
(c): Calculated using default values provided in IPCS (2009), EFSA Scientific Committee (2012a) EFSA FEEDAP Panel (2012).

Table 12: Other developmental studies with cyanogenic glycosides or foods containing cyanogenic glycosides

Compound Animals Exposure Cyanide (CN�) equivalents Findings Reference

Prunasin
>90% purity

Golden Syrian hamster,
dams n = 8

Gavage, 0 or 177
mg/kg bw, single, GD8

0 or 15.55 mg/kg bw(a) Foetus malformation in 15% of living foetuses at GD14 Willhite (1982)

Cassava Golden Syrian hamster,
dams, n = 8–12 per
group

Diet, without or with
high and low cyanide
cassava varieties,
GD3–GD15

0 or 21 mg/kg bw per day
(high), 1.6 mg/kg bw per
day (low) per day

Delayed foetal ossification and dose-dependent increase of
pups with a reduced bw
No significant differences in number of implantation,
resorptions or live foetuses per litter for both low and high
diet
Increased blood and urine thiocyanate in mothers,
increased foetal thiocyanate

Frakes et al.
(1986)

bw: body weight; GD: Gestation day; n: number.
(a): Calculated considering 1,000 mg prunasin equivalent to 87.88 mg CN�.

www.efsa.europa.eu/efsajournal 35 EFSA Journal 2019;17(4):5662

Cyanogenic glycosides in food



Genotoxicity

Genotoxicity of cyanide

Genotoxicity of cyanide has been summarised in EFSA (2004), WHO (2004), ATSDR (2006), US
Environmental Protection Agency (EPA) (2010) and FAO/WHO (1993, 2012).

KCN and/or NaCN did not induce reverse mutations in S. Typhimurium (strains TA79, TA98, TA100,
TA1535, TA1537, TA1538) with or without metabolic activation (De Flora, 1981; De Flora et al., 1984;
NTP, 1993; Kubo et al., 2002). FAO/WHO (1993) reported that KCN was negative in an Ames test with
Salmonella strains TA1537, TA1538 and TA98 with and without metabolic activation, and in a gene
mutation assay (HGPRT locus) in cultured Chinese hamster V79 cells with and without metabolic
activation up to high, cytotoxic concentrations (Leuschner et al., 1983, 1991, unpublished studies
submitted to WHO).

FAO/WHO (1993) also reported that HCN did not induce chromosomal aberrations in vivo in
Chinese hamsters treated orally by gavage with a single dose of 0.4 mg HCN/kg bw (Leuschner et al.,
1983, 1991, unpublished report submitted to WHO).

KCN induced direct non-reparable DNA damage in repair-deficient E. coli strains (WP67, CM871,
WP2) (De Flora et al., 1984).

A number of studies have reported that cyanide induces DNA fragmentation at high concentrations
in vitro (Bhattacharya and Rao, 1997; Vock et al., 1998), or following intraperitoneal (Mills et al., 1999)
and subcutaneous (Yamamoto and Mohanan, 2002) administration to mice. These studies indicate that
DNA fragmentation is secondary to the general toxicity of cyanide which results in the release of
endonucleases from dying cells. It is notable that KCN has been used as a model cytotoxic non-
genotoxic agent in studies aimed at determining whether the in vitro alkaline elution hepatocyte assay
(Storer et al., 1996) and the in vitro Comet assay (Henderson et al., 1998) can discriminate between
genotoxic and cytotoxic substances.

The CONTAM Panel concluded that the available data indicate that cyanide is not genotoxic.

Genotoxicity of cyanogenic glycosides

In 2012, JECFA concluded that there was no information available on the genotoxicity of CNGs
(FAO/WHO, 2012), and likewise, the CONTAM Panel did not identify studies on genotoxicity of isolated
CNGs carried out since then. Application of Quantitative Structure Activity Relationships in the OECD
toolbox (version 4.3.130 ) does not indicate a concern for genotoxicity.

3.1.4. Observations in humans

Acute toxicity

The signs and symptoms of cyanide poisoning reflect the extent of cellular hypoxia and occur when
the absorption rate of cyanide exceeds its metabolic detoxification. Signs of acute cyanide poisoning
include headache, severe hypotension, vertigo, agitation, respiratory depression, metabolic acidosis,
confusion, coma, convulsions and death. Definitive laboratory confirmation is generally delayed, but
elevated plasma lactate, associated with cardiovascular collapse, and sometimes ‘almond smell’ of the
patient’s breath, should suggest cyanide intoxication. Furthermore, a low arteriovenous difference of
oxygen in blood indicates cyanide intoxication. Cyanide poisoning treatment is based on supportive
care with adjunctive antidotal therapy. Multiple antidotes exist and are characterised by different
antidotal mechanisms, such as chelation, formation of stable, less toxic complexes, methaemoglobin
induction and sulfur supplementation for detoxification by endogenous rhodanese (Borron and Baud,
2012).

Mainly based on the results of Rumack (1983), the toxic threshold value for cyanide in the whole-
blood is considered to be between 0.5 mg/L (ca. 20 lM) and 1.0 mg/L (ca. 40 lM), and the lethal
threshold value between 2.5 mg/L (ca. 100 lM) and 3.0 mg/L (ca. 120 lM). A substantial degree of
uncertainty is associated to these values due to the fact that the blood samples were collected
sometime after the occurrence of the peak blood level (3.1.1). Consequently, these values are to be
considered as an underestimation of the cyanide lethal blood level.

The acute lethal oral dose of cyanide in humans is reported to be between 0.5 and 3.5 mg/kg bw.
There are a number of reports of fatal and non-fatal cyanide acute toxicity cases following the
ingestion of cyanogenic foods other than apricot kernels. For several of these studies, time of blood

30 Available from: http://www.oecd.org/chemicalsafety/risk-assessment/oecd-qsar-toolbox.htm
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sampling is not reported; for others, it is likely that the blood samples were collected sometime after
the occurrence of the peak blood level. The reported blood cyanide concentrations among the studies
should thereby not be compared to each other and do not necessarily correlate with the severity of
the toxic effects after cyanide poisoning.

A 67-year-old woman weighing 60 kg with a carcinoma of the large bowel arrived to the
emergency room in a comatose state. Blood levels of cyanide were higher than 2 mg/L (ca. 80 lM).
The patient fully recovered after treatment. Five months before admission to hospital, the patient
self-administered Laetrile31 by injection (not further specified) for a 2-month period and subsequently
switched to ‘Laetrile tablets’ for a 6-month period. The day before hospitalisation, the patient had
additionally eaten five grounded bitter almonds and started to vomit and having crampy abdominal
pains. On the day of admission, she felt well in the morning, and at night, she took another 12 bitter
almonds and subsequently collapsed (Shragg et al., 1982). Most likely, the additionally eaten almonds
led to additional exposure to cyanide originating from the almonds itself as well as from higher release
from Laetrile, due to the almond b-glucosidase.

A few hours after having eaten ‘gari’ (a cassava based meal), an 18-year-old woman started having
abdominal pain associated with vomiting and fell into a coma thereafter. She was thus transferred to
the emergency room where she died after 24 h from cardiorespiratory arrest. The blood and urine
were sampled as soon as the woman was hospitalised and the levels of cyanide were 1.15 mg/L (ca.
46 lM) and 0.67 mg/L, respectively. At the same time as the first patient, an 8-year-old boy was
brought to the emergency room in a comatose state. It was reported that the boy had been in that
state for almost 12 h after sharing the same cassava-based meal with the first patient. The boy died
the same day from cardiorespiratory arrest and his blood and urine levels of cyanide were 0.85 (ca.
34 lM) and 0.56 mg/L, respectively. A 17-year-old girl, referred to the hospital with the other two
patients after eating the same meal, was conscious on admission, but died after the development of
shock and renal failure. Her blood and urine cyanide levels were 1.35 mg/L (ca. 54 lM) and 0.40 mg/L,
respectively (Akintonwa and Tunwashe, 1992).

Five male students with a mean age of 24 years, presented with vomiting, abdominal cramps and
dizziness 1 h after sharing a cassava-based meal. All patients recovered fully within 5 h of ingestion
and the authors reported that only ‘traces’ of cyanide were detected in blood and urine samples.
Similarly, 12 patients presented symptoms of cyanide toxicity after sharing a meal of ‘gari’. All patients
fully recovered within 24 h (Akintonwa et al., 1994).

The authors describe also a case of five patients who developed severe signs of cyanide toxicity
and finally became comatose 10 h after eating a meal of ‘gari’. Blood cyanide concentration was on
average 1.75 mg/L (ca. 70 lM), while the average urine level of cyanide was 0.75 mg/L. All patients
died (Akintonwa et al., 1994).

An epidemic of acute intoxication associated with the consumption of bitter cassava was reported in
Mozambique when 70 patients were hospitalised with vomiting, abdominal pain, headache, and in
more severe cases had altered consciousness and dyspnoea. The clinical picture was consistent with
acute cyanide intoxication and all patients reported eating bitter cassava before the onset of the
symptoms. Blood cyanide levels were not reported (Cliff and Coutinho, 1995).

A 56-year-old woman weighing 60 kg had eaten about 300 g of alcohol-steeped cherries and
developed severe headache followed by nausea, vomiting and sleepiness. On hospital admission, she
appeared confused and severely dyspnoeic and was found comatose a few minutes later. Blood
analysis revealed severe metabolic acidosis. The patient was intubated and received artificial
ventilation. She regained consciousness on the following day, but still was confused and disorientated
for the next 14 days, manifesting hallucinations and psychomotor agitation. Twenty-seven days after
admission, she began complaining of blurred vision and distal paraesthesia of the lower limbs. The
neurological examination revealed slowed velocity of motor and sensory conduction; there was no
spontaneous activity in the muscles. Magnetic resonance imaging showed mild cortical and subcortical
atrophy and bilateral high signal intensities in certain brain regions. Fourteen months later, the patient
was fully oriented, but she had a masked face, mild rigidity of the upper and lower limbs, a shuffling
gait and increased salivation. Her visual acuity was still impaired, but there were no clinical signs of
motor-sensory neuropathy. L-Dopa treatment did not improve the parkinsonian syndrome. This
syndrome is observed in severe cases of intoxications with cyanide salts (e.g. Rosenberg et al., 1989).

31 Amygdalin is also sometimes referred to as laetrile. This designation is wrong, as the real laetrile is a semisynthetic cyanogenic
glucuronide promoted as an alternative anticancer agent with a chemical structure different from that of amygdalin (see EFSA
CONTAM Panel, 2016).
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Laboratory analyses of the spirit and cherries showed cyanide levels ranging from 4.7 to 15 mg/kg in
the cherries and from 43 to 45 mg/kg in the spirit. The total cyanide dose was estimated to be
between 10 and 20 mg. The case was interpreted as life-threatening cyanide intoxication with
remaining neurological deficits (Pentore et al., 1996). However, cyanide blood levels were not
measured, and the estimated dose seems too low to cause such a severe intoxication.

A 30-month-old girl suffered severe signs of cyanide toxicity after eating five bitter almonds. Her
blood cyanide level was 2.33 mg/L (ca. 93 lM); however, she recovered after treatment with
hydroxocobalamin (Nader et al., 2010).

A 58-year-old healthy woman developed symptoms of cyanide toxicity 2 h after eating about 50
bitter almonds. Her blood cyanide concentration was 2.77 mg/L (ca. 111 lM) 6 h after coma onset.
She recovered following treatment (Sanchez-Verlaan et al., 2011).

A 5-year-old boy ingested 10 bitter almonds and after 3 h developed dizziness, confusion,
somnolence and vomiting. He then developed generalised tonic–clonic seizures, and finally became
comatose. The child completely recovered after treatment in an intensive care unit. No cyanide levels
have been reported (Mouaffak et al., 2013).

After undergoing a routine cystoscopy requiring general anaesthesia, a 67-year-old man appeared
hypoxic with peripheral pulse oximetric measurement: oxygen levels as measured by pulse oximetry
increased slowly to 94%, despite continued administration of 100% oxygen therapy during and after
anaesthesia. Doctors confirmed the presence of cyanide in the body in venous blood through a
thiocyanate assay, with levels equal to 521 lmol thiocyanate/L, and whole-blood cyanide levels of
1.6 mg/L (ca. 64 lM). It was then discovered that the patient self-administered three 2 g tablets of
Novodalin (a proprietary amygdalin preparation) and had two teaspoons of home-made apricot kernel
extract per day. Analysis of Novodalin showed cyanide levels of 220 mg/kg and the homemade apricot
kernel extract 1,600 mg/kg of cyanide, meaning that the patient ingested daily approximately
17.32 mg of oral cyanide (Konstantatos et al., 2017). While the high blood cyanide level is explained
by the ‘medication’ of the patient, it should be noted that cyanide intoxication does not lead to blood
hypoxia. The authors discussed a possible functional failure of the peripheral pulse oximetry due to the
high cyanide levels.

In the previous opinion (EFSA CONTAM Panel, 2016), all scientific articles concerning human
poisoning associated with ingestion of CNGs in herbal preparations or ‘alternative medical treatments’
were described, and since then, no further studies have been published.

Summary remarks on acute toxicity

There are a number of reports of acute cyanide toxicity following the ingestion of amygdalin
preparations or cyanogenic foods, primarily apricot kernels, bitter almonds and insufficiently processed
cassava. Some of these cases were fatal.

The signs and symptoms of acute cyanide poisoning reflect the extent of cellular hypoxia and occur
when the absorption rate of cyanide exceeds its metabolic detoxification. These symptoms may include
headache, severe hypotension, vertigo, agitation, respiratory depression, metabolic acidosis, confusion,
coma, convulsions and death. The acute lethal oral dose of cyanide in humans is reported to be
between 0.5 and 3.5 mg/kg bw. The toxic threshold value for cyanide in the whole-blood is considered
to be between 0.5 mg/L (ca. 20 lM) and 1.0 mg/L (ca. 40 lM), and the lethal threshold value
between 2.5 mg/L (ca. 100 lM) and 3.0 mg/L (ca. 120 lM).

Long-term toxicity

Several neurological disorders, such as spastic paraparesis (konzo), tropical ataxic neuropathy and
ankle clonus, have been associated to dietary chronic exposure to cyanide in populations where
cassava constitutes the main source of calories. Moreover, in areas with low iodine intake, cyanide
chronic exposure from cassava has also been associated to hypothyroidism and goitre. Finally, it has
been hypothesised that chronic exposure to cyanide could be associated with type 2 diabetes in
malnourished populations, although this hypothesis is not supported by scientific evidence.

In 2012, the JECFA conducted an in-depth and detailed review of the literature on long-term health
effects of dietary chronic exposure to cyanide in cassava eating populations. The JECFA concluded that
the epidemiological association between cassava consumption and konzo was consistent, even though
the aetiological mechanism of konzo is still unknown. In particular, konzo has been associated with
chronic exposure to cyanogen at sublethal concentrations from cassava or cassava flour in
combination, with a low intake of sulfur-containing amino acids in a very simple and monotonous diet.
The main difficulty encountered when further investigating the association between chronic exposure
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to CNGs/cyanide and spastic paraparesis is thus, that the evidence is based on epidemiological
observations confounded by several nutritional deficiencies. Thus, the causal relationship cannot be
definitively established. No other cyanogenic foods are known to be ingested over long periods and at
comparable doses with regard to the resulting exposure to cyanide.

Similar conclusions have been reached for tropical ataxic neuropathy and ankle clonus: the
relationship between intake of cassava foods and dietary cyanide load and these neurological disorders
is consistent, although the evidence is based on studies at an aggregate level and conducted in
populations with serious nutritional deficiency and low dietary variability.

Finally, health consequences related to iodine deficiency (intake < 100 mg/day) can be considerably
aggravated by a chronic dietary exposure to cyanide from insufficiently processed bitter cassava, due
to the fact that thiocyanate is similar in size to the iodide ion and interferes with uptake of iodide into
the thyroid gland. Since the JECFA evaluation (FAO/WHO, 2012), no further studies have been
identified on the long-term toxicity of cyanide.

Summary remarks on long-term toxicity

All studies which investigated the long-term toxicity of cyanide have been conducted in populations
characterised by severe malnutrition condition and monotonous diet in which cassava represents the
main source of nutrition, which are unlikely to occur in European populations. Consequently, the
Panel concluded that these studies did not provide an appropriate basis for dose–response analysis for
the present risk assessment.

3.1.5. Mode of action for cyanide toxicity

Cyanide’s mode of action for acute toxicity has been described in detail in the previous EFSA
opinion (EFSA CONTAM Panel, 2016). Briefly, acute toxicity of cyanide is due to the impairment of
oxidative phosphorylation, a process whereby oxygen is used for the production of essential cellular
energy sources in the form of adenosine triphosphate (ATP) (Hall and Rumack, 1986; Beasley and
Glass, 1998; Guidotti, 2006; Hamel, 2011; Sahin, 2011). Consequently, tissue utilisation of oxygen is
inhibited and cells rapidly switch from an aerobic (oxygen-dependent) metabolism mode that yields
ATP, to anaerobic (oxygen-independent) energy production, which generates by-products, such as
lactate. Consequences of this sudden cessation of aerobic metabolism are hypoxia, metabolic acidosis,
and thus impairment of vital functions (Hall and Rumack, 1986; Guidotti, 2006; Hamel, 2011; Sahin,
2011). Organs which require a continuous supply of oxygen and ATP generated from aerobic
metabolism, such as the brain and the heart, are particularly prone to cyanide acute toxicity (Guidotti,
2006). All these reactions contribute to the symptoms described during cyanide acute intoxication
(WHO, 2004).

Unlike for acute toxicity, the target organ(s) and mode(s) of action for cyanide chronic toxicity have
not been identified (Cliff et al., 2015). Long-term consumption of CNG-enriched crops or products
derived thereof as a main source of nutrition have been associated with neurological impairment
(konzo and tropical ataxic neuropathy), which has been hypothesised to result among others from the
release of cyanide. Cyanide-induced neurotoxic effects have been linked to a dietary deficiency of
sulfur amino acids that might lead to (i) an impairment of cyanide detoxification processes and an
increase of plasma cyanide concentrations directly affecting upper motor neurons (Adamolekun, 2010)
or (ii) to a chronic state of neuron glutathione deficiency (Nunn et al., 2011). Neurological damages
associated to chronic exposure to CNGs could additionally be due to nitriles, which are cyanide’s
intermediate metabolites, capable of inducing neuron damage (Llorens et al., 2011). Nevertheless, the
observation that (i) spastic paresis has not been associated with cyanide exposure from any other
source (FAO/WHO, 2012), (ii) the excretion of thiocyanate does not substantially deviate between
cases and controls (FAO/WHO, 2012) and (iii) cyanide- load is not proportional to the occurrence of
neurologic signs. Onabolu et al. (2001) argue against the primary involvement of cyanide in
neurological diseases, observed upon long-term consumption of food items containing CNGs as main
source of nutrition. In conclusion, the mode of action of neurotoxic effects possibly associated with
cyanide long-term exposure is not fully understood.

Continuous exposure to cyanide can aggravate goitre and cretinism due to iodine deficiency. This
effect is likely due to thiocyanate, which is similar in size to the iodide ion and interferes with uptake of
iodide in the thyroid gland (FAO/WHO, 2012).
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3.1.6. Derivation of health-based guidance values

Acute reference dose (ARfD)

The CONTAM Panel concluded that there are no data indicating that the ARfD for CN of 20 lg/kg
bw, established in 2016, should be revised. This ARfD was set in the context of the risk assessment of
CNGs in raw apricot kernels. Consumption of raw apricot kernels rapidly releases CN, leading to peak
levels of CN in the blood within a short period of time. Consumption of bitter almonds and cassava can
result in similarly high peak levels of CN in the blood within a short period of time, whereas
consumption of other foods that contain CNGs release CN more slowly, and do not lead to such high
blood levels. This is considered by the application of bioavailability factors (see Section 3.4 on
Exposure assessment). The modes of action of acute toxicity of CN support the view that the peak
blood level is the relevant dose metric in determining whether consumption of CNGs will lead to acute
toxicity.

The CONTAM Panel concludes that the ARfD of 20 lg CN/kg bw should be protective for acute
effects of CN from CNGs, regardless of the dietary source. However, for foods other than raw apricot
kernels, bitter almonds and cassava roots, the ARfD is likely to be over-conservative. Establishment of
different ARfDs for different types of food is not considered appropriate.

Chronic health-based guidance value

Because foods other than raw apricot kernels, bitter almonds and cassava roots lead to slower and/
or less complete release of CN, the CONTAM Panel considered whether a chronic health-based
guidance value (HBGV) should be set in addition to the ARfD.

The CONTAM Panel noted evidence related to long-term neurological conditions in populations
groups with severe malnutrition and a diet in which cassava represents the main source of nutrition.
However, a causal relationship cannot be definitively established, and these studies did not provide an
appropriate basis for a dose–response analysis and therefore for establishing a chronic HBGV or for a
Margin of Exposure approach.

The Panel therefore also considered the data from repeat dose studies in experimental animals
treated with NaCN, KCN, amygdalin, prunasin, linamarin and cassava for a period longer than 2 weeks.
There was a lack of consistency in the findings of these studies. Many of these studies did not provide
biologically plausible responses and/or adequate dose–response information and in some of these
severe limitations in study design, statistics and reporting have been identified. The Panel concluded
that available evidence from animal studies does not allow identification of a critical effect or reference
point that could be used for derivation of a chronic HBGV.

3.2. Occurrence of total cyanide in food

3.2.1. Occurrence data on cyanide in food used for the assessment

The data for the present assessment were provided by national authorities from Italy, Poland,
France, Belgium, Lithuania, Spain, Estonia, and from Germany, which alone reported 89% of the
analytical results (Figure 5). The sampling dates were from 2000 to 2016. Data were extracted from
the SDWH on the 20 April 2018.
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The initial data set included 3,350 analytical data of which 3,017 were on food for human
consumption. The data set was subsequently analysed in order to exclude non-pertinent data, identify
possible issues and prepare the data for occurrence and exposure analysis. Samples were excluded
because the food group was not sufficiently specified (10 samples), had an LOQ > 400 mg/kg (21
samples), were apricot kernels (47 samples). One sample of red wine (left-censored (LC) and water
samples (123 samples, 100% LC) were also excluded because the Panel concluded that the presence
of cyanide in these food items is not likely. Finally, 2,586 analytical samples were used in the present
opinion. Table 13 lists the available data, after the data cleaning. The lowest (most detailed) FoodEx
categories associated to each of the food groups reported in Table 13 are listed in Annex A.2.

Figure 5: Distribution of analytical results
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Table 13: Distribution of analytical samples for total cyanide used in the present opinion according to food groups

Food groups(a) No of samples
Left-censored

data (%)
Mean LB
(mg/kg)

LB P95
(mg/kg)

Mean UB
(mg/kg)

UB P95
(mg/kg)

Grains for human consumption 2 0 6.4 – 6.4 –

Grain milling products 1 100 0.0 – 0.3 –

Pastries and cakes 35 91 1.2 – 3.5 15.9

Macaroons and amaretti 204 3 12.5 26.3 12.7 26.3
Biscuits (cookies) 33 36 3.3 – 4.1 –

Other starchy roots and tubers 7 86 0.3 – 0.6 –

Legumes, beans, dried 28 96 0.3 – 1.0 –

Almond, sweet (Prunus amygdalus var. dulcis) 35 17 4.5 – 4.5 –

Almond, bitter (Prunus amygdalus var. amara) 3 0 1,437 – 1,437 –

Linseed (Linum usitatissimum) 58 0 192.1 – 192.1 –

Jam, marmalade and other fruit spreads from cherry 5 0 2.3 – 2.3 –

Fruit products with cherries 2 0 4.6 – 4.6 –

Pralines 2 0 1.0 – 1.0 –

Marzipan 130 4 8.4 30.0 8.4 30.0
Drag�ee, sugar coated 2 100 0.0 – 0.1 –

Nougat 24 100 0.0 – 0.1 –

Juice or nectar 10 20 0.7 – 1.0 –

Juices, nectars and soft drinks with cherries 71 1 2.8 5.8 2.8 5.8
Wine-like drinks (e.g. Cider, Perry) 1 100 0.0 – 1.0 –

Liqueur 117 59 2.5 19.0 3.3 19.0
Spirits 1,815 54 2.8 16.0 3.3 16.0

Alcoholic mixed drinks 1 100 0.0 – 2.0 –

LB: lower bound; UB: upper bound; P95: 95th percentile.
(a): Only foods that can potentially contain CNGs or cyanide were considered for exposure assessment. Foods or ingredients of foods that can potentially contain CNGs or cyanide are foods (or

food ingredients) which have been reported to contain cyanide in publicly available literature or previous risk assessments. The food categories (FoodEx) considered are listed in Annex A.2.
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Several data reported in the literature on total cyanide concentration in cassava are listed in
Table 14. The highest value measured (235 mg/kg) for raw cassava purchased in Europe was then
used for the back-calculations (see Section 3.5 on Risk characterisation).
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Table 14: Data reported in the literature on total cyanide concentrations in cassava sold as ‘sweet raw’ cassava(a),(b),(c)

Country of
sampling

Country of origin
Year of
sampling

LOQ
N samples
analysed

mg CN/kg
(mean)

Concentration
range

(mg CN�/kg)
Reference

Denmark Costa Rica 2008 10 mg CN/kg 25 73 11–235 Kolind-Hansen and Brimer (2010)

Australia Singapore, India, Vietnam, Fiji 2005 1 mg CN/kg 3 68 20 (SD)(d) Burns et al. (2012)
Australia Singapore, India, Vietnam, Fiji 2006 1 mg CN/kg 3 83 5 (SD)(d)

Australia Singapore, India, Vietnam, Fiji 2007 1 mg CN/kg 3 84 1 (SD)(d)

Australia Singapore, India, Vietnam, Fiji 2008 1 mg CN/kg 3 51 2 (SD)(d)

Australia Singapore, India, Vietnam, Fiji 2011 1 mg CN/kg 3 7 4 (SD)(d)

Ireland Costa Rica 2001 Not reported 36 34.5 13–72.6 O’Brien et al. (2013)

Germany Brazil Not reported Not reported 22 125 69–215 Abraham et al. (2016)
Australia Not reported 2010 3–5 mg CN/kg 15 21 8.6–43.6 FSANZ (2014)

Australia Not reported 2013 3–5 mg CN/kg 3 37.3 34–40
Australia Not reported 2013 3–5 mg CN/kg 3 23.6 16–32

Australia Not reported 2013 3–5 mg CN/kg 3 50.9 31–81
Fiji Fiji Not reported 0.1 mg CN/kg 80 39 33–92 Dolodolotawake and Aalbersberg (2011)

Tonga Tonga Not reported 0.1 mg CN/kg 48 61 19–130

Vanuatu Vanuatu Not reported 0.1 mg CN/kg 10 47 26–78

LOQ: limit of quantification; SD: standard deviation.
(a): Total cyanide is defined as cyanide originating from CNGs and cyanohydrins by complete hydrolysis during sample preparation.
(b): Note that Codex defines ‘sweet cassava’ as cassava having a cyanide content of less than 50 mg total cyanide/kg (Codex STAN 238-2003).
(c): Note that ‘sweet cassava’ is usually marketed just as ‘cassava’.
(d): In the paper from Burns et al. (2012), concentration ranges have not been reported, SDs to the mean have been inserted instead.
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3.2.2. Occurrence data on food reported in previous assessments

In the opinion on hydrocyanic acid in flavourings and other food ingredients with flavouring
properties (EFSA, 2004) and in the risk assessment of JECFA (FAO/WHO, 2012), the total cyanide
concentrations of a wide variety of different plant food commodities have been reported and are
presented in a summarised form in Table 15 below.

Table 15: Total cyanide contents in food commodities containing cyanogenic glycosides(a)

Food commodity
HCN concentration

(mg/kg)(b),(c)
Reference

Almonds Ground 1.4 Anonymous (1975)

Paste 3 Schmidt (1972)
Kernel, bitter 300–3,400 Sturm and Hansen (1967), Lindner (1974);

FAO/WHO (1993)

Oil, bitter 800–4,000 Rosling (1987); Gupta (1987)
Kernel, bitter 4,690 (single value) Shragg et al. (1982)

Amaretti – 44 (single value) Corradi and Micheli (1982)
Apricot Kernel 120–4,000 Gupta (1987), Holzbecher et al. (1984)

Juice 0.3–7.8 Stadelmann (1976)
> 0.1(d) Schmidt (1972)

Kernel 89–2,170 IPCS (2004)
Bamboo Shoot 114–1,460 Haque and Bradbury (2002)

171–1,164 Haorongbam et al. (2009)
Immature shoot tip 7,700 (single value) IPCS (2004)

Cassava,
sweet

Root 10–20 Ogunsua (1989)
Root 10–20 FAO/WHO (2008)

1–132 Chiwona-Karltun et al. (2004)
15–93 Mkumbira et al. (2003)

8–1,064(e) Oluwole et al. (2007)
Cassava,
bitter

Root 60–200 Ogunsua (1989)

55 Lindner (1974)
15–1,120 Rosling (1987)

Root 15–1,120 FAO/WHO (2008)
22–661 Chiwona-Karltun et al. (2004)

43–251 Mkumbira et al. (2003)
27–543 Oluwole et al. (2007)

Cassava Flour 26–57 Ernesto et al. (2000)
Flour (gari) 20–30 Adindu et al. (2003)

Chips < 10–145 FSANZ (2009)
Cherry Juice 0.5–12(b) Stadelmann (1976), Schmidt (1972), Eid and

Schmidt (1978)

Garden bean Seed 20 Lindner (1974)
Lima bean Seed 144–167 Gupta (1987), Holzbecher et al. (1984)

Seed 265-530 Ologhobo et al. (1984)
Linseed Seed >500 Honig et al. (1983)

Seed 238–373 Oomah et al. (1992)
17–6,500 Kobaisy et al. (1996)

Ground seed (meal) 140–370 Haque and Bradbury (2002)
Marzipan – 15–50 Schmidt (1972)

Pea Seed 20 Lindner (1974)
Peach Kernel 470 Lindner (1974)

Peach Juice 2.3–5.9(d) Stadelmann (1976)
Plum Juice 0.33–1(d) Stadelmann (1976), Schmidt (1972)
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FSANZ published a survey of CNGs in plant-based foods in Australia and New Zealand 2010–2013
(FSANZ, 2014). In the survey, CNGs (measured as total cyanide) were detected in a wide range of
plant-based foods collected from retailers in Australia and New Zealand which were either consistent
with or lower than levels reported in the literature and which are presented in a summarised form in
Table 16 below.

Food commodity
HCN concentration

(mg/kg)(b),(c)
Reference

Soya bean Protein 0.03–0.07 Honig et al. (1983)
Stone fruit Canned ≤ 4 Voldrich and Kyzlink (1992)

< 0.01–0.02 Von Misselhorn and Adams (1976)

Stone fruit
brandies

– < 3(d) Schmidt (1972)

(a): Adapted from EFSA (2004) and FAO/WHO (2012).
(b): Corresponds to total cyanide concentration (originating from CNGs and cyanohydrins by complete hydrolysis during sample

preparation).
(c): Fresh weight until otherwise stated.
(d): mg/L.
(e): Dry weight.

Table 16: Total cyanide contents in food commodities containing cyanogenic glycosides(a) (FSANZ,
2014)

Food commodity
No of samples containing
HCN/No of samples taken

HCN concentration
(mg/kg)(b),(c)

LOD
(mg/kg)

Almonds, whole, flaked, ground, butter 3/6 4.8–12.4 4

Amaretti biscuits 1/1 34 NR
Apple juice 5/116 1.6–5.4 0.06(d)

Apple puree for infants 0/8 ND 0.01(d)

Apple sauce 2/3 3.6–4.1 4

Apricots, canned 0/4 ND 4
Apricot jam 0/1 ND 4

Apricot kernels with skin 18/18 1,240–2,820 NR
Apricot kernels without skin 10/10 49–440 NR

Apricot nectar 1/4 6.5 5
Bamboo shoots, canned 7/7 3.7–24.5 NR

Bamboo shoots, raw 3/3 24–550 NR
Bamboo shoots, pickled 3/3 9.6–44 NR

Bamboo shoots, boiled 3/3 28–73 NA
Cassava, frozen root, raw 3/3 34–40 NA

Cassava, steamed 3/3 9.0–26 4(e)

Cassava, frozen root, raw 3/3 16–32 NR

Cassava, boiled 3/3 7.3–23 NR
Cassava, frozen root, raw 3/3 31–81 NR

Cassava, fried 3/3 5.4–37 NR
Cherry juice 0/3 ND NR

Cherry liqueur 0/3 ND 4
Lima beans, raw 1/3 32 4

Linseed, whole or meal 5/5 91–178 4
Linseed containing bread 6/6 5.4–49 NR

Marzipan 1/4 5.3 4
Passion fruit 2/5 4.7–6.6 4

Prune juice 0/3 ND 4
Pumpkin seed 0/4 ND 4
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3.3. Food processing and impact on release of cyanide

Introduction

Food items produced from cyanogenic plants may pose a health risk for consumers if the levels of
CNGs are high. Therefore, the major aim of processing such crops is to decrease their potential for
releasing cyanide upon ingestion. As described in detail in Section 1.3.1 on Chemistry, CNGs are water-
soluble compounds, which are chemically quite stable but undergo degradation to cyanide when they
get in contact with certain enzymes (b-glycosidases and hydroxynitrile lyases) present in the plant cells
at different locations. Most food detoxification processes of cyanogenic crops utilise the water solubility
and degradability of CNGs by endogenous plant enzymes. In general, mechanical destruction of the
plant cells is achieved by peeling, chipping, grating or pounding the raw crops, followed by soaking in
water to solubilise the CNGs for extraction and enzymatic degradation. The degradation by
endogenous enzymes is enhanced by microorganisms associated with the raw crop or added
intentionally during the fermentation process. Occasionally, additional enzymes for the destruction of
plant cells are added, e.g. pectinase. Drying by sun or oven heat is frequently used to help to
evaporate the released cyanide as volatile hydrocyanic acid.

Only few cyanogenic plants are of practical importance as raw materials for food and feed (Brimer,
2010). However, some of them, e.g. cassava and lima beans, serve as the staple food for large
numbers of people in some regions of the world. Others, such as almond or apricot kernels, are used
for the production of marzipan and persipan, respectively. The current detoxification processes used
for such economically important plant materials are described in some detail below.

Processing of major cyanogenic crops

Cassava

Cassava (Manihot esculenta Crantz) is a staple crop for over 500 million people, mostly in sub-
Saharan Africa and parts of South America and Asia (Gnonlonfin et al., 2012). Although consumption
in Europe is low, it is on the rise due to high numbers of immigrants from Africa (Kolind-Hansen and
Brimer, 2010). The root tubers of cassava are a rich source of starch but contain only little protein
(less than 5% of the dry weight), whereas the leaves contain valuable proteins, minerals and vitamins
(Montagnac et al., 2009). However, both roots and leaves of the bitter cultivars of cassava contain
high levels of CNGs (linamarin and lotaustralin in a 20:1 ratio), together with some antinutrients
(phytate, certain polyphenols, oxalate and saponins). The concentration of CNGs in leaves is about
tenfold higher than in the root tubers.

The various processing techniques used for reducing the cyanide content of cassava roots have
been reviewed by Montagnac et al. (2009), Gnonlonfin and Brimer (2013) and Brimer (2015). In
general, boiling, steaming, baking or frying the whole fresh roots or pieces (chips) of fresh roots are
not very effective, usually resulting in cyanide retention of 50% or more. The poor reduction of CNGs
is believed to be due to the heat-induced inactivation of the degrading enzymes, in particular
linamarase, which is needed to hydrolyse the heat-stable linamarin to glucose and acetone
cyanohydrin (see also Figure 3 in Section 1.3.1 on Chemistry). In addition, the contact of CNGs with
linamarase is poor under these conditions because the plant cells are still mostly intact. For the same
reasons, drying of fresh roots or root chips by the sun or in an oven usually does not lead to a cyanide

Food commodity
No of samples containing
HCN/No of samples taken

HCN concentration
(mg/kg)(b),(c)

LOD
(mg/kg)

Spinach 0/2 ND 4
Sunflower seed 0/2 ND 4

Taro leaves 0/2 ND 4

Vine leaves, canned 0/1 ND 4

ND: not detected; NR: not reported.
(a): Adapted from FSANZ (2014).
(b): Corresponds to total cyanide concentration (originating from CNGs and cyanohydrins by complete hydrolysis during sample

preparation) and analysed with acid hydrolysis (following Haque and Bradbury, 2002) unless otherwise specified.
(c): Concentrations refer to fresh weight.
(d): Analysed with EU HPLC method (European Committee for Standardisation, 2012).
(e): Value reported for cassava starch.
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reduction of 50% or more, although sun drying is more effective than oven drying because of the
lower drying temperature.

The efficacy of reducing cyanogens and cyanide in cassava roots can be increased to > 90% by
mechanical disruption of the plant cells (by crushing, repeated pounding, or grating) or by soaking in
water for several days (believed to cause a slow disintegration of the cells), followed by allowing time
for fermentation and finally by a roasting step. During fermentation of grated roots, linamarin is
efficiently degraded to its cyanohydrin, which is quite stable at the acidic pH of the fermentation but
decomposes to hydrocyanic acid and acetone during roasting. Prolonged soaking in water leads to
partial extraction of the linamarin from the roots. Over time, different combinations of detoxification
techniques have been developed in different geographical regions in order to convert raw cassava to
edible products, which usually contain only about 2% of the cyanide present in the raw material.
These combinations are described in more detail by Montagnac et al. (2009). A few examples are
listed in Table 17 for African food items.

In addition to detoxifying raw cassava roots, the processing of cassava flour as obtained on the
market appears as a useful option. Bradbury (2006) developed a simple ‘wetting method’, which can
be carried out to further reduce the total cyanide content of flour three- to sixfold at home just prior
to use. In principle, a thin layer of wet cassava flour is kept in the shade for several hours in order to
allow the residual linamarase to degrade the residual CNGs. Using this wetting method is hoped to
reduce the incidences of cyanide poisoning and konzo in African countries (Bradbury et al., 2011).

Because of their content of proteins, minerals and vitamins, detoxified Cassava leaves often
supplement meals made from Cassava flour (Latif and M€uller, 2015). As for roots, several traditional
detoxification techniques have been developed for cassava leaves in various countries, but each
method has some limitations. One common practice is pounding the leaves for 15 min, followed by
boiling in water for 10–120 min. Pounding lowers cyanogen content by 60–70% and subsequent
boiling provides a product containing only about 3% of the original cyanogens (Montagnac et al.,
2009). However, this method leads to a loss of more than half of the proteins and water-soluble
vitamins. Therefore, milder methods for removing cyanogens from cassava leaves have been
proposed, e.g. pounding the leaves (step 1), followed by 2 h in the sun or 5 h in the shade (step 2),
and finally three times washing with water (step 3). The residual content of cyanogens after steps 1, 2
and 3 was 28, 12 and 1%, respectively (Bradbury and Denton, 2014).

Lima beans

Lima beans (Phaseolus lunatus L.) constitute one of the most widely cultivated pulse crops in
temperate and subtropic regions (Adeparusi, 2001). In addition to containing antinutrients such as
inhibitors of trypsin and amylase, some cultivars have high levels of CNGs, in particular linamarin
(Brimer, 2010). Adeparusi (2001) compared the effects of soaking (for 3, 6 and 9 h at 2°C),
autoclaving (at 121°C and 0.01 MPa for 10, 15 or 20 min) and toasting (at 204°C for 10, 15 or
20 min) on the cyanogen content of lima beans. While soaking caused only a moderate decline of
cyanogens (30% reduction after 9 h), a more rapid decline was achieved by autoclaving and by
toasting, leading to a non-detectable level after 20 min with both methods.

Bamboo shoots

Young, immature culms emerging from the rhizome of various bamboo species have long been
used for edible purpose in South East Asian countries. Bamboo shoots are low in fat and calories but
rich in proteins, vitamins and minerals. However, they also contain cyanogens, primarily taxiphyllin
(Brimer, 2010) at levels which vary considerably between bamboo species growing in different
agroclimatic regions. Pandey and Ojha (2014) studied the decrease of cyanogens in shoots from four

Table 17: Efficacy of combined processing techniques for lowering the cyanide content of bitter
cassava in various African food items (taken from the review of Montagnac et al., 2009)

Food item Processing techniques Used in e.g. CN� retention

Fufu Soaking of fresh roots for 3 days, followed by sun drying
for 3 days

Ghana, Nigeria 2.2%

Gari Soaking, fermentation, roasting Nigeria 1.8%

Akyeke Grating, fermenting for 5 days, washing and drying,
steaming

Ghana 2%
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bamboo species when boiled in water with different concentrations of NaCl (0, 1, 5 and 10%) for
various length of time (10, 15, 20, 25 min). A reduction of about 80–95% of the cyanogens was
achieved in most cases, which was, however, accompanied by significant losses of proteins and
micronutrients. The authors state that there is no single specific treatment for all bamboo species
which removes cyanogens with minimum loss of nutrients. Although earlier studies had suggested that
addition of NaCl to the boiling water could speed up the decrease of cyanogens, a clear effect of NaCl
was not observed in the study by Pandey and Ojha (2014).

Linseed

Linseed (Linum usitatissimum L., also named flaxseed) has been cultivated for more than
8,000 years in Europe and Asia for its fibre and oil, and more lately for its beneficial micronutrients, in
particular highly unsaturated fatty acids and hormonally active lignans. However, linseed also contains
considerable amounts of CNGs, primarily linustatin and neolinustatin together with small amounts of
linamarin (Brimer, 2010). The detoxification of cyanogens in linseed has been tried by various
conventional methods, e.g. boiling, roasting, autoclaving, microwave, extrusion and solvent extraction.
These methods have the disadvantage of incomplete degradation of CNGs and partial removal of
beneficial constituents (Feng et al., 2003; Barthlet and Bacala, 2010). Yamashita et al. (2007)
developed a method to detoxify CNGs in linseed meal on a commercial scale by enzymatic release of
HCN and its subsequent removal by steam evaporation. Freshly ground linseed was superior as a
source of degrading enzyme compared to b-glycosidase from sweet almonds or butter beans, because
of the higher activity of the b-glycosidases of linseed for the linseed CNGs. Steam evaporation was
more effective than heating or lyophilisation to evaporate the HCN. This method lowered the residual
cyanide content below the detection limit without affecting the protein, fat, fibre and lignan content of
the linseed.

Almonds, kernels of apricots and peaches and products derived thereof

Almonds, apricot kernels and peach kernels are of importance for the production of marzipan and
persipan, which consist of about 40% ground kernels and 60% sugar. All these seeds contain the
CNGs amygdalin and prunasin. While the level of cyanogens is rather low in the sweet variety of
almonds (about 25 mg CN/kg), bitter almonds and apricots contain cyanogens at levels ranging from
about 500 to more than 1,000 mg cyanide/kg (Chaouali et al., 2013). Marzipan is exclusively produced
from the kernels of sweet almonds which do not need detoxification due to their low cyanogen
content, which is further decreased by the manufacturing process (blanching, chopping and grinding
with sugar into almond flour). In contrast, bitter almonds and the kernels of apricots and peaches are
detoxified during the production of persipan in order to comply with the EU ML of 50 mg/kg (see
Section 2 on Legislation). Tuncel et al. (1995) have studied the effects of grinding, soaking and
cooking on the level of cyanogens in apricot kernels with a high content of CNGs. Although
considerable reductions were observed, these treatments were not sufficient, and substantial addition
of an external b-glucosidase from almonds was required to achieve full degradation of the cyanogens
in raw or blanched apricot kernels (Tuncel et al., 1998). The addition of pectinase, which was hoped to
improve the contact between CNGs and endogenous b-glycosidases, did not increase the degradation
of cyanogens.

Products of apples, cherries and plums

Seeds of numerous fruits contain amygdalin and prunasin (Donald, 2009). Although fruit kernels
are commonly not ingested, they are present during the production of fruit juices and stone fruit
spirits, and cyanogens may seep into such products. Whereas plum seeds have relatively high levels of
amygdalin (10–17 mg/g), seeds from apples and cherries are in the range of 1–4 mg/g (Bolarinwa
et al., 2014, 2015). When a number of apple juices and apple purees commercially available in Great
Britain was analysed for their amygdalin content, values ranging from 0.001 to 0.039 mg/mL were
observed, which is in the order of 1% or less of the concentration in apple seeds. A concentration of
0.039 mg amygdalin/mL corresponds to a maximum content of 0.0023 mg cyanide/mL. When
commercially available apple juices in Australia were analysed for their total cyanide content, i.e. the
sum of CNGs, their cyanohydrins, and free cyanide, similar values were detected (FSANZ, 2014). Thus,
it appears that the levels of cyanogens in products from apples are too low to require detoxification
measures.
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Sorghum malt for beer production and sorghum beer

Beer produced by the fermentation of sorghum sprouts is widely consumed in various African
countries, e.g. Benin, Togo, Cameroon, Ghana and Nigeria (Tokpohozin et al., 2016). Sorghum malt
from sprouted grains of Sorghum bicolor contains a high level (up to 1,400 mg/kg) of the CNG
dhurrin, which is not sufficiently degraded by the aryl-b-D-glucosidase dhurrinase during traditional
sorghum malting and mashing. Therefore, traditional African sorghum beers have a cyanide content of
around 11 mg/kg. It has been proposed to reduce dhurrin during mashing prior to alcoholic
fermentation by using lactic acid bacteria which exhibit aryl-b-D-glucosidase activity. This may also
generate good precursors for beer flavouring (Tokpohozin et al., 2016).

Summary remarks

The aim of processing of cyanogenic food plants or their derived food items is to decrease their
potential for releasing cyanide upon ingestion. Methods of such detoxification are based on the water
solubility of CNGs and their enzymatic degradability to cyanide, followed by evaporation of the
liberated cyanide as hydrocyanic acid. Using a multistep approach, an effective detoxification to very
low residual levels of cyanide (in the low percentage range of the original levels) can be achieved for
cassava, lima beans, linseed, almonds, kernels of apricots and peaches and their products and
sorghum.

3.4. Exposure assessment

Current exposure assessment for humans

Availability of cyanide from the intake of CNGs from particular foods

As observed in the study of Abraham et al. (2016), mean peak levels of cyanide in blood are
different after consumption of apricot kernels (15.46 lM), cassava root (16.95 lM), linseed (6.40 lM)
and persipan (1.44 lM), all containing the same dose of total cyanide (see Table 2). Peak levels are
the relevant dose metric determining cyanide acute toxicity, and those of apricot kernels (and bitter
almonds) and cassava root reflect the fast and more or less complete release of cyanide after chewing.
In contrast, the velocity and/or the completeness of the release are lower in the cases of ground
linseed and persipan. For exposure to cyanide from foods other than raw apricot kernels, bitter
almonds and cassava roots, this ARfD is likely to be over-conservative because of the lower
bioavailability of cyanide from those foods. To consider this quantitatively in case of exposure
assessment of ground linseed, a factor of 3 was calculated from the relation of the mean peak levels
(cassava peak to ground linseed). Accordingly, a factor of 12 was calculated for persipan which is also
applicable for marzipan. Data on the acute exposure of ground linseed and persipan/marzipan,
respectively, were divided by these factors in order to consider the lower bioavailability of cyanide after
consumption of these foods. For all other food items, no data on bioavailability are available, and a
factor of 1 was used as a default value to consider the worst case. Table 18 provides an overview of
the correction factors for release/bioavailability as applied in the exposure assessments.

Table 18: Correction factors (rounded) applied for certain food groups to consider different CN
bioavailability

Food item
Correction

factor
Remarks

Almonds 1 Bioavailability considered not to be different from that of apricot kernels

Cassava 1 Calculated from peak levels observed from Abraham et al. (2016)
Linseed(a) 3 Calculated from peak levels observed in the study of Abraham et al. (2016)

Persipan/
Marzipan

12 Calculated from peak levels observed in the study of Abraham et al. (2016)

All other food
items

1 As default factor (no specific data available)

(a): The factor of 3, measured for ground linseed, has also used for linseed in general, as this is the worst case. Intact linseed is
expected to have a very low bioavailability of cyanide after consumption.
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Current acute exposure to cyanide originating from foods containing CNGs using EFSA consumption
and occurrence data

The summary statistics (mean and P95) of the probabilistic dietary exposure assessment to cyanide
originating from foods containing CNGs across European dietary surveys and different age classes
obtained by running 500 iterations among the occurrence data used in this opinion is presented in
Table 19.

Table 19 shows the mean and P95 of acute exposure estimates at the UB and LB to cyanide
originated from foods containing CNGs obtained for different age groups. The range represents the
minimum (Min) to the maximum (Max) from the different countries and the number in the brackets
are the 95% confidence intervals. Detailed mean and P95 dietary exposure estimates calculated for
each dietary survey under the LB and UB assumption can be found in Annex B.1 and B.2, respectively.

The mean dietary exposure ranged from 0.0 to 13.5 lg/kg bw per day (minimum LB to maximum
UB) across different age classes. The highest mean exposures were found in toddlers (range from 0.9
to 13.5 lg/kg bw per day, minimum LB to maximum UB) other children (range from 1.4 to 12.6 lg/kg
bw per day, minimum LB to maximum UB) and for infants (range from 0.0 to 6.1 lg/kg bw per day,
minimum LB to maximum UB). The P95 of acute dietary exposure to cyanide originating from foods
containing CNGs ranged from 0.0 and 51.7 lg/kg bw per day (minimum LB to maximum UB) across
different age classes. The highest P95 exposures were found for toddlers (range from 5.3 to 51.7 lg/kg
bw per day, minimum LB to maximum UB), other children (range from 6.5 to 46.4 lg/kg bw per day,
minimum LB to maximum UB), infants (range from 0.0 to 27.8 lg/kg bw per day, minimum LB to
maximum UB) and adolescents (range from 2.3 to 23.7 lg/kg bw per day, minimum LB to maximum UB).
Annexes B.1 and B.2 show in detail the estimated mean and P95 of exposure (expressed in lg/kg bw per
day, under the UB assumption) across all dietary surveys and age classes.

It is worth noticing that consumption of ‘almond, bitter’ was reported in 12 different eating
occasions, each of them from different subjects from Austria (1 ‘Other child’, 8 g), Germany (9 ‘Other
children’, up to 0.5 g) and Slovenia (2 ‘Adults’, up to 15 g). Due to the very high levels of total cyanide
in ‘almond, bitter’, average exposure in consumers only was estimated as equal to 369.4 lg/kg bw per
day (CI: 361.1–379.6) for the Austrian ‘Other child’, 10.3 lg/kg bw per day (CI: 10.2–10.5) for the
German ‘Other children’ and 295.1 lg/kg bw per day (CI: 288.6–303.4) in the Slovenian ‘Adults’.
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Table 19: Summary statistics of the probabilistic dietary acute exposure assessment to cyanide originating from foods containing CNGs across European
dietary surveys and different age classes obtained by running 500 iterations(a)

Lower bound

Age group No of surveys

Mean dietary exposure (lg/kg bw per
day) No of surveys

P95 dietary exposure (lg/kg bw per day)

Min (95% CI) Max (95% CI) Min (95% CI) Max (95% CI)

Infants 11 0.0 (0.0–0.9) 4.4 (3.9–4.9) 10 0.0 (0.0–0.0) 21.9 (19.0–24.8)

Toddlers 15 0.8 (0.7–1.0) 8.3 (5.7–13.0) 15 5.3 (4.2–6.2) 40.5 (32.7–47.7)
Other children 21 1.4 (1.3–1.6) 6.9 (5.9–8.1) 21 6.5 (6.0–7.1) 37.5 (30.2–47.0)

Adolescents 21 0.4 (0.3–0.5) 3.6 (3.2–4.0) 21 2.3 (2.0–2.7) 18.5 (14.3–23.3)
Adults 23 0.6 (0.5–0.7) 2.6 (2.5–2.7) 23 2.1 (1.8–2.4) 13.5 (13.0–14.0)

Elderly 20 0.5 (0.3–0.7) 2.2 (2.0–2.4) 20 1.3 (0.6–2.6) 11.0 (10.0–12.2)
Very elderly 17 0.8 (0.6–1.0) 1.9 (1.5–2.4) 15 2.8 (1.2–5.2) 11.3 (7.3–17.0)

Pregnant women 2 1.1 (1.0–1.3) 1.4 (1.0–2.0) 2 6.0 (4.0–8.6) 6.7 (5.5–8.0)

Lactating women 2 1.1 (0.9–1.4) 1.4 (0.9–2.1) 2 6.3 (4.9–7.7) 7.2 (5.0–11.4)

Upper bound

Age group No of surveys

Mean dietary exposure (lg/kg bw per
day) No of surveys

P95 dietary exposure (lg/kg bw per day)

Min (95% CI) Max (95% CI) Min (95% CI) Max (95% CI)

Infants 11 0.1 (0.0–0.9) 6.1 (5.7–6.5) 10 0.2 (0.1–0.4) 27.8 (25.5–30.5)
Toddlers 15 1.1 (0.9–1.2) 13.5 (12.5–14.5) 15 6.3 (5.6–7.3) 51.7 (36.4–79.0)

Other children 21 2.0 (1.9–2.2) 12.6 (11.7–13.7) 21 10.2 (9.5–11.0) 46.4 (39.3–54.5)
Adolescents 21 0.5 (0.5–0.7) 5.7 (5.4–6.1) 21 3.3 (3.0–3.7) 23.7 (21.9–25.5)

Adults 23 0.8 (0.8–0.9) 4.4 (4.3–4.5) 23 3.9 (3.7–4.1) 18.8 (18.3–19.3)
Elderly 20 0.8 (0.6–1.0) 3.9 (3.8–4.1) 20 3.0 (2.2–3.8) 15.8 (14.7–17.0)

Very elderly 16 1.2 (1.0–1.4) 3.6 (3.3–4.0) 15 5.7 (4.9–6.7) 14.3 (12.8–16.7)
Pregnant women 2 1.6 (1.4–1.7) 2.4 (2.0–2.9) 2 7.7 (6.8–8.8) 8.2 (6.5–10.3)

Lactating women 2 1.6 (1.4–1.9) 2.7 (2.2–3.3) 2 8.0 (6.9–9.1) 11.0 (8.6–13.5)

bw: body weight; CI: confidence interval; Min: minimum; Max: maximum; P95: 95th percentile.
(a): Exposure calculated including the respective factors for the specific food items as given in Table 18.
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Current chronic exposure to cyanide originating from foods containing CNGs using EFSA consumption
and occurrence data

Table 20 shows the summary statistics of the chronic dietary exposure assessment to cyanide
originating from foods containing CNGs across European dietary surveys and different age classes.
Detailed mean and P95 dietary exposure estimates calculated for each dietary survey under the LB and
UB assumption can be found in Annex C.1.

The mean chronic dietary exposure ranged from 0.0 to 13.5 lg/kg bw per day (minimum LB to
maximum UB) across different age classes. The highest mean exposures were found in toddlers (range
from 0.9 to 13.5 lg/kg bw per day, minimum LB to maximum UB), in other children (range from 1.4
to 12.6 lg/kg bw per day, minimum LB to maximum UB) and in infants (range from 0.0 to 6.1 lg/kg
bw per day, minimum LB to maximum UB).

The P95 of chronic dietary exposure to HCN ranged from 0.6 to 34.5 lg/kg bw per day (minimum
LB to maximum UB) across different age classes. The highest P95 exposures were found for toddlers
(range from 4.5 to 34.5 lg/kg bw per day, minimum LB to maximum UB) followed by other children
(range from 4.3 to 32.9 lg/kg bw per day, minimum LB to maximum UB) and infants (range from 0.6
to 24.7 lg/kg bw per day, minimum LB to maximum UB).

Cyanogenic glycosides in food

www.efsa.europa.eu/efsajournal 53 EFSA Journal 2019;17(4):5662



Table 20: Summary statistics of the chronic dietary exposure assessment to cyanide originating from foods containing CNGs across European dietary
surveys and different age classes

Lower bound

Age group No of surveys
Mean dietary exposure (lg/kg bw per day)

No of surveys
P95 dietary exposure (lg/kg bw per day)

Min Max Min Max

Infants 11 0.0 4.4 10 0.6 17.5

Toddlers 14 0.8 8.2 12 4.5 22.8
Other children 19 1.4 6.9 19 4.3 20.0

Adolescents 18 0.4 3.6 17 1.8 12.9
Adults 19 0.6 2.6 19 2.1 10.0

Elderly 18 0.5 2.2 18 1.5 12.6
Very elderly 15 0.0 1.9 10 2.5 7.4

Pregnant
women

2 1.1 1.4 2 3.6 4.1

Lactating
women

2 1.1 1.3 2 4.0 4.4

Upper bound

Age group No of surveys
Mean dietary exposure (lg/kg bw per day)

No of surveys
P95 dietary exposure (lg/kg bw per day)

Min Max Min Max

Infants 11 0.1 6.1 10 0.9 24.7
Toddlers 14 1.1 13.5 12 5.6 34.5

Other children 19 2.0 12.6 19 7.3 32.9
Adolescents 18 0.5 5.7 17 2.7 19.7

Adults 19 0.8 4.4 19 3.5 15.6
Elderly 18 0.8 3.9 18 2.0 12.9

Very elderly 15 0.0 3.6 10 4.4 12.8
Pregnant women 2 1.6 2.4 2 5.6 7.2

Lactating women 2 1.6 2.5 2 6.0 6.1

bw: body weight; CI: confidence interval; Min: minimum; Max: maximum; P95: 95th percentile.
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Contribution of individual foods to acute and chronic exposure to cyanide via the diet

The contribution to acute and chronic dietary exposure to cyanide for the individual food groups
was assessed under the LB and UB assumptions separately for each survey and age group. For all age
groups, in most surveys, the food groups that contributed the most to the acute exposure to cyanide
were ‘Biscuits (cookies)’, ‘Juice or nectar’ and ‘Pastries and cakes’. Linseed contributed up to 40% to
the overall acute exposure under the LB assumption with the highest values (> 30%) found in ‘Very
elderly’ (Sweden), ‘Elderly’ (Ireland, Portugal and Sweden) ‘Adults’ (Sweden) and ‘Other children’
(Finland). Marzipan contributed up to 4% and 3% to the overall acute exposure (highest value in ‘Very
elderly’ in Denmark) under the LB and UB assumptions, respectively, across all countries and
population groups. Bitter almonds contributed to the overall acute exposure only in ‘Other children’ in
Austria (LB 23% and UB 13%) and Germany (LB 1% and UB 0.5%) and in ‘Adults’ in Slovenia (LB
60% and UB 40%). The sources of exposure are reported in Annexes B.3 and B.4 for all countries and
population groups and under the LB and UB assumption, respectively.

‘Biscuits (cookies)’, ‘Juice or nectar’ and ‘Pastries and cakes’ were also the main contributors to
chronic exposure in most countries and age groups (Annex C.2).

The graph in Annex D.1 presents the sources of mean acute exposure considering all subjects for
the surveys available for the children age groups (i.e. ‘Infants’, ‘Toddlers’ and ‘Other children’) while
the graph in Annex D.2 shows the sources of mean acute exposure to cyanide considering only those
children for which exposures exceeded the ARfD. Likewise, in these children, ‘Biscuits (cookies)’, ‘Juice
or nectar’ and ‘Pastries and cakes’ were the most important contributors to acute exposure.

The CONTAM Panel noted that, for some of the food items, the number of occurrence values is
very limited.

Human exposure to cyanide originating from foods containing CNGs as reported from
previous assessments

In the present section, the term HCN (that corresponds to the term ‘total cyanide’ used in the
present opinion) has been retained for consistency reasons when used in previous assessments.

In their opinion on hydrocyanic acid in flavourings and other food ingredients with flavouring
properties (EFSA, 2004), the EFSA AFC Panel noted that data from the UK showed that average and
97.5th percentile exposures from HCN in flavourings corresponded to about 0.8 and 3.6 lg HCN/kg bw
per day, respectively, and that a Norwegian survey showed that average and 97.5th percentile
exposures in consumers to HCN was 1.4 and 5.4 lg HCN/kg bw per day, respectively. Consuming
200 g of cassava would lead to an intake of 30 lg HCN/kg bw in a 60-kg adult which would not cause
acute toxicity following previous conclusions from JECFA (FAO/WHO, 1993). Assuming consumption of
retail marzipan paste containing the highest amount of 20 mg HCN per kg found in this commodity
and assuming that 100 g of such marzipan would be consumed in a single sitting by a 60 kg person,
this would result in an acute exposure of 30 lg HCN/kg bw.

The JECFA (FAO/WHO, 2012) concluded that the occurrence and the consumption data available
were not sufficient to carry out international estimates for acute or chronic dietary exposure. However,
national estimates were reported. In the UK, the highest acute exposures were estimated with
consumption of apricot kernels (up to 440 lg HCN/kg bw). For cassava, the highest estimate in adults
was 300 lg HCN/kg bw in New Zealand. For cassava chips, estimates were up to 1,044 lg HCN/kg bw
for children and 370 lg HCN/kg bw for adults in Australia and New Zealand, respectively. National
acute exposure assessments (97.5th percentile) for HCN from apple juice in New Zealand and Australia
ranged between 2 and 110 lg HCN/kg bw. Estimated chronic dietary exposure to HCN from national
exposure assessments, based either on individual or a range of different foods, ranged between 1 and
60 lg HCN/kg bw per day for average consumers and between 2 and 150 lg HCN/kg bw per day for
high consumers.

In the survey of CNGs in plant-based foods in Australia and New Zealand 2010–2013 (FSANZ,
2014), chronic dietary exposure was assessed using a semi-probabilistic method where different
consumption values for foods from national surveys were combined with a single value for HCN
concentration. Raw apricot kernels were not included as no consumption had been recorded in any of
the national nutrition surveys. The major contributor to chronic dietary HCN exposure in the adult
population (Australia ≥ 17 years, New Zealand ≥ 15 years) in both countries was linseed-containing
bread (75%). Corresponding values were 8% and < 5% for almonds, < 5% and 13% for cooked
cassava and 15% and 5% for cassava chips in Australia and New Zealand, respectively. In the
non-adult groups (in Australia 2–16 years, in New Zealand 5–14 years), linseed-containing bread
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contributed 37% and 24% to chronic exposure in Australia and New Zeeland, respectively.
Corresponding values were 26% and 32% for linseed, < 5% and 7% for cooked cassava, 15% and
22% for cassava chips, 6% and < 5% for each apple juice and passion fruit. Overall, the 90th
percentile UB total exposures ranged from 3 to 5 lg HCN/kg bw per day in adult and non-adult
populations, respectively. Acute dietary exposure was assessed deterministically combining a single
97.5th percentile consumption value with the maximum HCN concentration in this food. Using a
consumption size of 32 apricot kernels per day, acute exposures in adults ranged from 724 to 755 lg
HCN/kg bw per day. High consumption of linseed-containing bread led to an acute exposure of up to
511 lg HCN/kg bw per day.

3.5. Risk characterisation

The CONTAM Panel concludes that the ARfD of 20 lg CN/kg bw should be protective for acute
effects of CN from CNGs, regardless of the dietary source. For exposure to cyanide from foods other
than raw apricot kernels, bitter almonds and cassava roots, the release of cyanide is slower and the
resultant blood levels are lower and the ARfD is likely to be over-conservative. Establishment of
different ARfDs for different types of food is not considered appropriate, and therefore, the CONTAM
Panel applied factors to adjust the cyanide exposure from linseed, persipan and marzipan to allow for
the lower bioavailability (see Table 18). No data were available to determine adjustment factors for
cyanide exposure from other foods that contain CNGs, and therefore, a factor of 1 relative to raw
apricot kernels, bitter almonds and cassava roots was applied as a worst-case assumption, which is
likely to be over-conservative.

Acute dietary exposure to cyanide from foods containing CNGs was estimated applying these
factors. Mean dietary exposure did not exceed the ARfD of 20 lg CN/kg bw for any age group. At the
P95, the ARfD was exceeded by up to about 2.5-fold (up to 51.7 lg/kg bw) in some consumption
surveys for ‘Infants’, ‘Toddlers’, ‘Other children’ and ‘Adolescents’. It is likely that these exposures are
overestimated, especially due to the assumptions about full cyanide bioavailability from foods other
than bitter almonds, cassava roots, linseed, persipan and marzipan. Additionally, the acute exposure
assessment estimates acute exposures over or within 1 day, whereas for acute toxicity of cyanide, the
amount of the respective consumed food in one eating occasion is more relevant. Taking into account
the conservatism in the exposure assessment and in derivation of the ARfD, it is unlikely that this
estimated exceedance would result in adverse effects.

The available data on chronic toxicity of cyanide are not sufficient to determine if there are
potential risks to consumers in EU populations.

3.6. Estimation of the amount of certain foods that can contain CNGs
that could be consumed without exceeding the ARfD

In order to provide information that might be useful for risk managers, the Panel performed an
‘exposure back-calculation’ estimating the maximum quantity of raw cassava root, gari, cassava flour,
ground linseed and bitter almonds as well as for food items for which an EU maximum level (ML) for
cyanide has been established that can be ingested without exceeding the ARfD of 20 lg/kg bw for the
different age groups. For these back-calculations, the same factors to account for different
bioavailability as those for exposure assessment have been applied.

For raw cassava root, this calculation was performed using the highest concentration value of
cyanide in cassava sold as ‘sweet raw’ cassava, usually marketed just as ‘cassava’ reported in the
literature (235 mg total cyanide/kg, see Table 14 in Section 3.2) as a worst-case approach. For raw
cassava root, containing 235 mg total cyanide/kg, the ARfD is reached by consumption of 0.7–8.5 g
depending on the body weight of the individual (Table 21).

Table 22 shows the estimated maximum amount of gari and cassava flour that can be consumed
without exceeding the ARfD using the respective Codex MLs of 2 and 10 mg total CN/kg as occurrence
values. Depending on the body weight, for gari, consumption of 87–1,000 g can reach the ARfD for
cyanide. If reported maximum (230 g) and mean (90 g) portion sizes, as reported from a consumption
survey in Nigerian adults (Sanusi and Olurin, 2012) were consumed, these exposures to cyanide would
not reach the ARfD. When applying the Codex ML of 10 mg cyanide/kg for cassava flour back-
calculations show that, depending on body weight, consumption of 17–200 g leads to an exposure
equivalent to the ARfD. Reported portion sizes for cassava flour in Nigerian adults (Sanusi and Olurin,
2012) with a mean of 380 g and a maximum of 750 g appear very high, but it needs to be pointed
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out that cassava flour is not consumed as such but is further processed likely leading to significant
decreases of the total cyanide concentrations.

Table 23 shows the estimated maximum amount of ground linseed that can be consumed without
exceeding the ARfD of 20 lg/kg bw using the highest value reported in the EFSA database (407 mg
CN/kg) as a worst-case approach. Depending on the body weight of the individual, consumption of
1.3–14.7 g of ground, linseed containing CN at this level, reaches the ARfD (see Table 23). It can be
expected that consumption of intact linseed (i.e. not freshly ground) would lead to much lower cyanide
exposures. The European Medicines Agency (EMA, 2006) recommends consumption of 10–15 g of
linseed (whole or ‘broken’ linseed) three times a day to treat constipation in adults and adolescents
aged over 12 years. For ground linseed containing the highest level of measured total CN levels
(407 mg/kg) as a worst-case scenario, the ARfD would be exceeded by a toddler when consuming
about 4 g of ground linseed (roughly a tea spoon). Taking into account all uncertainties, a risk for
adolescents cannot be excluded if ground linseed (e.g. when put in a blender) is consumed at the
amount recommended by the EMA.

Table 24 shows the estimated maximum amount of bitter almonds (Prunus amygdalus var. amara)
that can be consumed without exceeding the ARfD of 20 lg/kg bw using the highest value reported in
the EFSA database (1,477 mg/kg). Depending on the body weight of the individual, consumption of
0.1–1.4 g bitter almonds, containing this level, reaches the ARfD. Considering that the weight of bitter
almonds varies between 0.4 and 1 g (Sturm and Hansen, 1967), the ARfD would already be exceeded
by consumption of less than half a small kernel in ‘Toddlers’ and by consumption of 1 big kernel in
‘Adults’.

Finally, back-calculations were carried out for food items for which maximum limits for total cyanide
exist, i.e. for marzipan or its substitutes or similar products, canned stone fruits (Regulation EC
No 1334/2008) and spirits (Regulation EC No 220/2008). Here, the respective MLs were applied to
assess the maximum amount of the respective food that can be consumed in one eating occasion by
each age class without exceeding the ARfD (Table 25). Assuming that marzipan or persipan contains
the respective maximum limit of 50 mg CN/kg and depending on the body weight, consumption of 42–
480 g could reach the ARfD (Table 25). For canned stone fruits, and stone fruit marc spirits and stone
fruit spirits, a default correction factor of 1 and the respective MLs were applied in a worst-case
scenario for the back-calculations (see Table 24). Depending on the body weight of the individual,
consumption of 35–400 g canned stone fruits, containing the respective ML of 5 mg CN/kg, leads to
an exposure equivalent to ARfD. For stone fruit marc spirits and stone fruit spirits, containing 35 mg
total CN/kg, the ARfD is reached by consumption of 26–57 g, depending on the body weight of the
individual.

For nougat, no human bioavailability studies were available to establish a correction factor. The
CONTAM Panel concluded that a correction factor of 1 (as used for all other food items with no human
bioavailability data available) would be over-conservative in this highly processed food item, which
does not necessarily contain a natural source of CNGs. The available occurrence data in the EFSA data
base indicate that CN is only present in very low amounts in nougat which are far below the ML.
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Table 21: Estimated consumption of raw cassava root (g/eating occasion) that can be consumed without exceeding the ARfD of 20 lg/kg bw using the
highest CN levels(a) reported in the literature for cassava sold as ‘sweet raw’ cassava as an occurrence value

Age group
Body weight (kg) Total CN

(mg/kg)
Correction

factor
ARfD

(mg/kg bw)

Maximum consumption
(g/eating occasion)

P5 Mean P95 P5 Mean P95

Raw cassava root

Toddlers 8.7 11.9 15.9 235(b) 1 0.02 0.7 1.0 1.4
Other children 14 23.1 37 235(b) 1 0.02 1.2 2.0 3.2

Young adolescents 29.4 43.4 62 235(b) 1 0.02 2.5 3.7 5.3
Adolescents 45 61.3 83 235(b) 1 0.02 3.8 5.2 7.1

Adults 52 73.9 100 235(b) 1 0.02 4.4 6.3 8.5

ArfD: acute reference dose; bw: body weight; P5: 5th percentile; P95: 95th percentile; ML: maximum level.
(a): Originating from CNGs and cyanohydrins by complete hydrolysis during sample preparation. The term ‘HCN’ used in Codex standards corresponds to the term ‘total cyanide’ used in the

present opinion.
(b): The highest concentration (mg total CN/kg) reported in the literature.

Table 22: Estimated consumption of gari or cassava flour (g/eating occasion) that can be consumed without exceeding the ARfD of 20 lg/kg bw using
Codex maximum levels for total cyanide(a) as an occurrence value

Age group
Body weight (kg) ML

(mg/kg)
Correction

factor
ARfD

(mg/kg bw)

Maximum consumption
(g/eating occasion)

P5 Mean P95 P5 Mean P95

Gari

Toddlers 8.7 11.9 15.9 2(b) 1 0.02 87 119 159
Other children 14 23.1 37 2(b) 1 0.02 140 231 370

Young adolescents 29.4 43.4 62 2(b) 1 0.02 294 434 620
Adolescents 45 61.3 83 2(b) 1 0.02 450 613 830

Adults 52 73.9 100 2(b) 1 0.02 520 739 1,000

Cassava flour

Toddlers 8.7 11.9 15.9 10(c) 1 0.02 17 24 32
Other children 14 23.1 37 10(c) 1 0.02 28 46 74

Young adolescents 29.4 43.4 62 10(c) 1 0.02 59 87 124
Adolescents 45 61.3 83 10(c) 1 0.02 90 122 166

Adults 52 73.9 100 10(c) 1 0.02 104 148 200

ArfD: acute reference dose; bw: body weight; P5: 5th percentile; P95: 95th percentile; ML: maximum level.
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(a): Originating from CNGs and cyanohydrins by complete hydrolysis during sample preparation. The term ‘HCN’ used in Codex standards corresponds to the term ‘total cyanide’ used in the present opinion.
(b): Codex ML for gari (Codex STAN 193-1995) is 2 mg total CN/kg.
(c): Codex ML for cassava flour (Codex STAN 193-1995) is 10 mg total CN/kg.

Table 23: Estimated amount of ground linseed (g/eating occasion) that can be consumed without exceeding the ARfD of 20 lg/kg bw using the highest
CN level reported in the EFSA database as an occurrence value

Linseed

Age
Body weight (kg) Total CN

(mg/kg)
Correction

factor
ARfD

(mg/kg bw)

Maximum consumption
(g/eating occasion)

P5 Mean P95 P5 Mean P95

Toddlers 8.7 11.9 15.9 407(a) 3 0.02 1.3 1.7 2.3

Other children 14 23.1 37 407(a) 3 0.02 2.1 3.4 5.5
Young adolescents 29.4 43.4 62 407(a) 3 0.02 4.3 6.4 9.4

Adolescents 45 61.3 83 407(a) 3 0.02 6.6 9.0 12.2

Adults 52 73.9 100 407(a) 3 0.02 7.7 10.9 14.7

bw: body weight; P5: 5th percentile; P95: 95th percentile; ARfD: acute reference dose.
(a): Highest concentration reported in the EFSA data base.

Table 24: Estimated amount of bitter almonds (Prunus amygdalus var. amara) (g/eating occasion) that can be consumed without exceeding the ARfD of
20 lg/kg bw using the highest CN level reported in the EFSA database as an occurrence value

Bitter almonds

Age
Body weight (kg) Total CN

(mg/kg)
Correction

factor
ARfD

(mg/kg bw)

Maximum consumption
(g/eating occasion)

P5 Mean P95 P5 Mean P95

Toddlers 8.7 11.9 15.9 1,477(a) 1 0.02 0.1 0.2 0.2

Other children 14 23.1 37 1,477(a) 1 0.02 0.2 0.3 0.5
Young Adolescents 29.4 43.4 62 1,477(a) 1 0.02 0.4 0.6 0.8

Adolescents 45 61.3 83 1,477(a) 1 0.02 0.6 0.8 1.1

Adults 52 73.9 100 1,477(a) 1 0.02 0.7 1.0 1.4

bw: body weight; P5: 5th percentile; P95: 95th percentile; ARfD: Acute reference dose.
(a): Highest concentration reported in the EFSA database.
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Table 25: Estimated amount of foods (g/eating occasion) for which EU maximum level for total cyanide(a) has been established that can be consumed
without exceeding the ARfD of 20 lg/kg bw, using the maximum level as occurrence value

Age group
Body weight (kg) ML

(mg/kg)
Correction

factor
ARfD

(mg/kg bw)

Maximum consumption
(g/eating occasion)

P5 Mean P95 P5 Mean P95

Marzipan or its substitutes and similar products (persipan)(b)

Toddlers 8.7 11.9 15.9 50(b) 12 0.02 42 57 76
Other children 14 23.1 37 50(b) 12 0.02 67 111 178

Young adolescents 29.4 43.4 62 50(b) 12 0.02 141 208 298
Adolescents 45 61.3 83 50(b) 12 0.02 216 294 398

Adults 52 73.9 100 50(b) 12 0.02 250 355 480

Canned stone fruits

Toddlers 8.7 11.9 15.9 5(c) 1 0.02 35 48 64
Other children 14 23.1 37 5(c) 1 0.02 56 92 148

Young adolescents 29.4 43.4 62 5(c) 1 0.02 118 174 248
Adolescents 45 61.3 83 5(c) 1 0.02 180 245 332

Adults 52 73.9 100 5(c) 1 0.02 208 296 400

Stone fruit marc spirits and stone fruit spirits(d,e)

Adolescents 45 61.3 83 35(e) 1 0.02 26 35 47

Adults 52 73.9 100 35(e) 1 0.02 30 42 57

bw: body weight; P5: 5th percentile; P95: 95th percentile; ML: maximum level; ARfD: Acute reference dose.
(a): Originating from CNGs and cyanohydrins by complete hydrolysis during sample preparation. The term ‘HCN’ used in EU legislation corresponds to the term ‘total cyanide’ used in this opinion.
(b): EU ML (as laid down in Reg. 1334/2008) for marzipan or its substitutes or similar products is 50 mg total cyanide/kg.
(c): EU ML (as laid down in Reg. 1334/2008) for canned stone fruits is 5 mg total cyanide/kg.
(d): ‘Toddlers’, ‘Other children’ and ‘Adolescents’ were not considered in the calculations as these age groups were considered not relevant for these food items.
(e): EU ML (as laid down in Reg. 110/2008) for stone fruit marc spirits and stone fruit spirits is 7 g HCN/hL of 100% volume alcohol (70 mg/L). Assuming an alcohol content of 50%, this

corresponds to approximately 35 mg/kg.

www.efsa.europa.eu/efsajournal 60 EFSA Journal 2019;17(4):5662

Cyanogenic glycosides in food



3.7. Uncertainties

The evaluation of the inherent uncertainties in the present assessment was performed following the
guidance of the opinion of the Scientific Committee related to Uncertainties in Dietary Exposure
Assessment (EFSA, 2007). The CONTAM Panel took note of the new guidance on uncertainties of the
Scientific committee (EFSA Scientific Committee, 2018), but it was not implemented in this opinion.

Assessment objectives

The objectives of the assessment are clarified in Section 1.2 Interpretation of the terms of
reference.

Occurrence data/consumption data/exposure assessment

The occurrence data used in the present assessment were not representative of European countries
since Germany provided about 89% of the data. Limited occurrence and consumption data were
available to EFSA for relevant food commodities such as cassava and cassava-derived products. Also,
from the published literature, only few occurrence data on cyanide in cassava and cassava products
were available, with limited information concerning the cassava varieties. It can be assumed that the
exposure to CNGs differs between ethnic groups as a consequence of specific dietary habits. Based on
the lack of information of dietary habits of such groups within European countries, these potential
differences could not be considered in the present assessment and constitute an uncertainty. There is
uncertainty in the detection of total cyanide in different food commodities, because the amount of
cyanide released from the CNG might be influenced by and depend on the hydrolysation method
applied. There is a lack of information on consumption of cassava and products thereof in the
European population.

It is not possible to identify the consumption events of processed products potentially containing
cyanide because of their ingredients like almonds, marzipan/persipan and stone fruits (e.g. ‘Pastries
and cookies’, ‘Biscuits’, ‘Fruit juices’). For each of these categories, the CONTAM Panel selected a list of
FoodEx categories that could contain almonds, marzipan/persipan and stone fruits and these foods
were used for the assessment of chronic and acute exposure (see Annex A.2). These assumptions are
likely to lead to an overestimation of exposure at population level.

Cyanide exposure from processed foods containing CNGs might as well be overestimated when
based on their total cyanide content only because food processing (such as heating) will not only
reduce the amount of total cyanide which is determined in routine analysis but also the activity of
degrading enzyme, which is usually not determined in routine analyses. Factors of 2.65 and 11.8 were
calculated from the relation of the mean peak levels i.e. the cassava peak to linseed/persipan peak
(which also was applied for marzipan), rounded to 3 and 12, respectively, and the occurrence values
were divided by these factors to reflect differential bioavailability of cyanide. However, these factors
were derived from limited data. For all other food commodities, a default factor of 1 was applied
because of the lack of human cyanide bioavailability data, thereby assuming 100% bioavailability. This
is likely to be over-conservative.

Other uncertainties

All uncertainties associated with the derivation of the ARfD in the opinion on acute health risks
related to the presence of CNGs in raw apricot kernels (EFSA CONTAM Panel, 2016), and which are
described there more in detail, also apply for the present risk assessment.

Furthermore, the maximum bioavailability of CN from CNG is reached only if the chewing process is
fast and effective, if the stomach is empty and if no other foods are eaten simultaneously.
Bioavailability under more realistic eating patterns is uncertain.

Relatively little is known about the absorption, distribution and excretion of CNGs and their
cyanohydrins in laboratory animals or in humans.

For CNGs other than amygdalin and linamarin, no acute and repeated dose toxicity studies have
been identified. There was no information available on the genotoxicity of CNGs.

The potential chronic toxicity of cyanide released from foods containing CNGs could not be
characterised and it is unclear whether chronic dietary exposure to cyanide could represent a risk to
the health of European consumers. In particular, based on the limited data, it was not possible to
conclude on the relevance of observations on male reproduction. This constitutes a major uncertainty.
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Using EU or Codex MLs for estimating the maximum tolerable amount of foods in the back-
calculations constitutes an uncertainty as it is not known if these levels can be found in foods on the
European market.

Summary of uncertainties

In Table 26, a summary of the uncertainty evaluation is presented, highlighting the main sources of
uncertainty and indicating an estimate of whether the source of uncertainty leads to over/
underestimation of the resulting risk.

The overall uncertainty incurred with the present assessment is considered as high. The
assessment is more likely to overestimate than to underestimate the risk.

4. Conclusions

4.1. Introduction

Cyanogenic glycosides (CNGs) contain chemically bound cyanide groups and are present in
numerous plants that are consumed as food such as almonds, linseed, lima beans and cassava. CNGs
are stable in the intact plants because their degrading enzymes are stored in different cellular
compartments. When the plant cells are damaged, e.g. by grinding or chewing, CNGs and enzymes
are brought in contact and cyanide is released, which in an aqueous environment always exists as a
mixture of non-dissociated acid (hydrogen cyanide, HCN) and its dissociated form (cyanide ion, CN�).
Depending on their chemical structure, different CNGs release different amounts of cyanide (e.g.
linamarin 109 mg HCN/g CNG, amygdalin 59 mg HCN/g CNG). No validated methods are available for
the measurement of CNGs as well as total cyanide in food items.

Table 26: Summary of major uncertainties in the risk assessment of cyanogenic glycosides in foods
except raw apricot kernels and products thereof

Sources of uncertainty Direction(a)

Limited occurrence data for food commodities such as cassava and cassava-derived products +/�
Assumption that processed products are potentially containing cyanide due to ingredients like
almonds and stone fruits

+

Quantification of total CN in different food items +/�
Lack of consumption data on relevant food items and specific dietary habits of ethnic groups in
European populations

+/�

Use of the correction factors of 3 and 12 to calculate CN exposures due to consumption of
linseed and marzipan/persipan

+/�

Use of a default factor of 1 for all foods containing CNGs in the absence of appropriate human
cyanide bioavailability data

+

Limited data on the impact of food processing on CN content in foods +

Assumption that 20 lM CN in blood are a threshold for toxicity in humans, including sensitive
subgroups (see EFSA CONTAM Panel, 2016)

+/�

Selection of an uncertainty subfactor of 1.5 for toxicokinetic variability (see EFSA CONTAM Panel,
2016)

+/�

Application of the default uncertainty subfactor of 3.16 for toxicodynamic variability (see EFSA
CONTAM Panel, 2016)

+

Maximum bioavailability of CN from CNG under realistic eating patterns +

For CNGs other than amygdalin and linamarin, no acute or repeated dose toxicity studies have
been identified

�

Lack of information on chronic effects of CN �
CN: cyanide; CNG: cyanogenic glycoside.
(a): + = uncertainty with potential to cause overestimation of exposure/risk; � = uncertainty with potential to cause

underestimation of exposure/risk. Extent of potential over/underestimation might differ in direction.
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4.2. Toxicokinetics

• In general, absorption of intact CNGs from the gastrointestinal appears to depend on the
carbohydrate moiety. Absorbed intact CNGs are rapidly excreted unchanged in the urine.

• Cyanide released by plant enzymes or gut microbial enzymes is readily absorbed from the
gastrointestinal tract and rapidly distributed to all organs of the body. In blood, cyanide is
mostly found in erythrocytes bound to methaemoglobin.

• Absorbed cyanide is biotransformed to thiocyanate and several other metabolites, which are
detoxification products and excreted with the urine. The rate of detoxification is low in humans
(about 1 lg/kg bw per min) and depends on the availability of sulfur-containing amino acids.

• Toxic tissue concentrations of cyanide are to be expected if the rate of absorption exceeds the
rate of detoxification, and if the availability of sulfur donors is low.

• Because of the low rate of detoxification of cyanide, the peak blood and tissue levels of
cyanide strongly depend on the amount of CNGs in the food and the rate of release of cyanide
which in turn depends on the presence and activity of the degrading plant enzymes.

• The peak cyanide blood concentration (assessed by serial measurements of cyanide in whole-
blood after ingestion) can be used as a reliable biomarker for acute cyanide exposure.

• Although the determination of absorbed CNGs as well as their metabolite thiocyanate in urine
is useful for comparing different chronic exposure levels, it cannot provide information on the
absolute exposure. This is because the degree of absorption and the proportion of the CNG
degraded to cyanide in the intestine or colon are not known and because urinary thiocyanate
can be strongly influenced by other factors including smoking or diet.

• In a study on cyanide bioavailability in healthy adults, mean peak levels of cyanide in blood
were found to be different after consumption of apricot kernels, cassava root, linseed and
persipan, indicating a fast and virtually complete release of cyanide after chewing of apricot
kernels, bitter almonds and cassava roots only.

4.3. Toxicity in experimental animals

• Acute toxicity of cyanides (HCN, NaCN, KCN, Ca(CN)2) is characterised by dyspnoea, ataxia,
loss of consciousness, convulsions, asphyxiation and death.

• Acute toxicity of CNGs depends on the release of cyanide and its subsequent absorption. It is
characterised by arrhythmias, ataxia, convulsions, lethargy, decreased respiratory rate and
death.

• Histopathological alterations in the thyroid, kidney, liver and CNS, sometimes paralleled with
clinical signs, and decreased cauda epididymis weights, sperm count and motility in rats and
cauda epididymis weight in mice have been observed after repeated dose exposure to CN� in
some but not all studies. This lack of consistency in the findings of the different studies
generates uncertainty regarding the findings in animal studies.

• A limited number of repeated dose toxicity studies for both individual CNGs and foods
containing CNG were identified. With the CNGs linamarin and amygdalin, alterations in
haematology and clinical chemistry parameters and histopathological alterations were seen.
With gari and cassava, behavioural changes have been observed. None of these observations
allow for the derivation of a dose descriptor.

• There are indications of teratogenicity in offspring of hamsters exposed to CNGs or cassava
and developmental toxicity in rats exposed to KCN which were often observed in the presence
of maternal toxicity.

• The available data do not indicate that cyanide is genotoxic. No information is available on the
genotoxicity of CNGs.

4.4. Observations in humans

• The acute lethal oral dose of cyanide in humans is reported to be between 0.5 and 3.5 mg/kg
bw. The toxic threshold value for cyanide in blood is considered to be between 0.5 mg/L (ca.
20 lM) and 1.0 mg/L (ca. 40 lM), and the lethal threshold value between 2.5 mg/L (ca.
100 lM) and 3.0 mg/L (ca. 120 lM).

• The rate of detoxification of cyanide in healthy adults is about 1 lg/kg bw per min only, which
corresponds to about 4.2 mg cyanide/h in a 70 kg individual.
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• Signs of acute cyanide poisoning include headache, vertigo, agitation, respiratory depression,
metabolic acidosis, confusion, coma, convulsions and death.

• Cases of acute cyanide toxicity have resulted from ingestion of amygdalin preparations and of
apricot kernels, bitter almonds and cassava. Some of these cases were fatal.

• Several neurological disorders and other diseases have been associated to dietary chronic
exposure to cyanide in cassava-eating populations where cassava constitutes the main source
of calories. However, a causal relationship cannot definitively be established, and these studies
did not provide an appropriate basis for a dose–response analysis.

4.5. Mode of action

• The primary mode of action for acute toxicity of cyanide is the inhibition of oxidative
phosphorylation leading to anaerobic energy production.

• Cessation of aerobic metabolism results in hypoxia, metabolic acidosis and impairment of vital
functions.

• Due to the high oxygen and energy demand, brain and heart are particularly sensitive to acute
cyanide toxicity.

• The role of cyanide in neurologic impairment observed upon long-term consumption of foods
containing CNGs has not been elucidated.

• Continuous exposure to cyanide can aggravate goitre and cretinism due to iodine deficiency.
This effect is likely due to thiocyanate, which is similar in size to the iodide ion and interferes
with uptake of iodide in the thyroid gland.

4.6. Health-based guidance values

• The CONTAM Panel concluded that there are no data indicating that the ARfD for CN of 20 lg/kg
bw, established in 2016, should be revised.

• The ARfD of 20 lg CN/kg bw should be protective for acute effects of CN released from foods
containing CNGs, regardless of the dietary source.

• For exposure to cyanide from foods other than raw apricot kernels, bitter almonds and cassava
roots, this ARfD is likely to be over-conservative because of the lower bioavailability of cyanide
from these foods. To account for these differences, factors were applied for food items where
bioavailability data were available. For food items where such data were not available, a factor
of 1 was used assuming complete cyanide bioavailability. Establishment of different ARfDs for
different types of food is considered not appropriate.

• The Panel concluded that available evidence from animal and human studies does not allow
the derivation of a chronic HBGV.

4.7. Occurrence

• A total of 2,586 analytical results corresponding to the requested criteria were extracted from
the EFSA database and analysed to estimate the human acute and chronic dietary exposure to
CN originating from foods containing CNGs.

• Germany provided about 89% of the occurrence data. Among the occurrence data used, 46%
were left-censored.

• The foods with the highest occurrence values were bitter almonds (Prunus amygdalus var.
amara) and in linseed (Linum usitatissimum).

• No occurrence data were available in the EFSA database for cassava root and products derived
thereof.

• Some plants used for food production, in particular bitter cassava, require detoxification of
CNGs by extraction and enzymatic degradation, followed by evaporation of the liberated
hydrocyanic acid. The CNGs in apricot and bitter almond kernels are reduced to acceptable
levels during the process of manufacturing persipan.

4.8. Exposure assessment

• The CONTAM Panel concluded that factors should be applied to assess cyanide exposure,
because of the differences in cyanide availability from particular foods.
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• Since it is not possible to identify the consumption events of processed products potentially
containing cyanide due to ingredients like almonds, marzipan/persipan and stone fruits (e.g.
‘Pastries and cookies’, ‘Biscuits’, ‘Fruit juices’, for each of these categories, the CONTAM
Panel selected a list of FoodEx categories that could contain almonds, marzipan/persipan and
stone fruits and these foods were used for the assessment of chronic/acute exposure.

• For cassava and cassava-derived products and almonds, a factor of 1; for linseed, a factor of
3; and for marzipan/persipan, a factor of 12 were calculated based on a human bioavailability
study. Occurrence data on these foods were divided by the respective factors for inclusion in
exposure assessment. For all other food items, no data on bioavailability were available, and a
factor of 1 was used as a default worst-case value.

• The estimates of mean acute exposure to cyanide originating from foods containing CN across
43 different dietary surveys and all age groups ranged from 0.0 to 13.5 lg/kg bw per day
(minimum LB to maximum UB). The estimates of P95 acute exposure ranged from 0.0 to
51.7 lg/kg bw per day (minimum LB to maximum UB). The highest acute dietary exposures
were estimated for ‘Infants’, ‘Toddlers’ and ‘Other children’.

• The estimates of mean chronic exposure to cyanide across 38 different dietary surveys and all
age groups ranged from 0.0 to 13.5 lg/kg bw per day (minimum LB to maximum UB). The
estimates of P95 chronic exposure ranged from 0.6 to 34.5 lg/kg bw per day (minimum LB to
maximum UB). The highest chronic dietary exposures were estimated for ‘Infants’, ‘Toddlers’
and ‘Other children’.

• The main contributors to acute and chronic dietary exposure to cyanide in all age groups were
‘Biscuits (cookies)’, ‘Juice or nectar’ and ‘Pastries and cakes’.

4.9. Risk characterisation

• The CONTAM Panel concludes that the ARfD of 20 lg CN/kg bw should be protective for acute
effects of CN from CNGs, regardless of the dietary source. Mean dietary exposure did not
exceed the ARfD of 20 lg CN/kg bw for any age group.

• At the P95, the ARfD was exceeded by up to about 2.5-fold in some consumption surveys used
in the exposure assessment for ‘Infants’, ‘Toddlers’, ‘Other children’ and ‘Adolescents’. It is likely
that these exposures are overestimated in particular because of the assumption that cyanide is
fully bioavailable from foods other than bitter almonds, cassava roots, linseed, persipan and
marzipan.

• Taking into account the conservatism in the exposure assessment and in derivation of the
ARfD, it is unlikely that this estimated exceedance would result in adverse effects.

• The data on chronic toxicity of cyanide are not sufficient to determine if there are potential
risks to consumers in EU populations.

4.10. Estimation of the amount of certain foods that can contain CNGs
that could be consumed without exceeding the ARfD

• Exposure ‘back-calculations’ have been carried out to estimate the amount of certain food
items that can be ingested without exceeding the ARfD of 20 lg/kg bw for the different age
groups. This was carried out for raw cassava root, gari, cassava flour, ground linseed and
bitter almonds (Prunus amygdalus var. amara) as well as for food items for which EU maximum
levels (MLs) for cyanide have been established. For these back-calculations, the same factors
to account for different bioavailability as those for exposure assessment have been applied.

• Depending on the body weight, consumption of 1.3–14.7 g ground linseed containing a high
concentration of 407 mg CN/kg could reach the ARfD. Taking into account all uncertainties, a
risk for younger age groups cannot be excluded if grounded linseed (e.g. when put in a
blender) is consumed. Consumption of 0.1–1.4 g bitter almonds (1,477 mg CN/kg) reaches the
ARfD, which corresponds to an amount of less than half a small kernel in ‘Toddlers’ and of 1
large kernel in ‘Adults’.

• The corresponding values for consumption of raw cassava root containing a high concentration
of 235 mg CN/kg are 0.7–8.5 g. If gari or cassava flour containing the respective Codex MLs of
2 mg total CN/kg and 10 mg total CN/kg, respectively, are consumed, the ARfD is reached
with 87–1,000 g gari and 17–200 g cassava flour.
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• If marzipan or persipan containing the respective maximum limit (ML) of 50 mg CN/kg is
consumed, the ARfD is reached with 42–480 g. Consumption of 35–400 g canned stone fruits
containing the respective EU ML of 5 mg total cyanide/kg leads to an exposure equivalent to
the ARfD. If stone fruit marc spirits and stone fruit spirits contain the EU ML of 35 mg total
cyanide/kg, the ARfD is reached by consumption of 26–57 g, depending on the body weight of
the individual.

5. Recommendations

• Validated methods are needed for the quantification of CNGs and total cyanide in different
food items.

• The variation of hydrolytic enzymes in food crops needs to be investigated. The potential to
identify cultivars of crops with relatively low content of CNG or of hydrolytic enzymes need to
be investigated.

• Additional occurrence data for cyanide and CNGs are needed for raw and processed food
commodities.

• Consumption data are needed for a number of foods that can contain CNGs (such as cassava
root and leaf products) and are present on the European market. Consumption data reflecting
specific dietary habits of ethnic groups are also needed.

• Human toxicokinetics of CNGs and released cyanide after ingestion of food items containing
CNGs need to be studied further.

• More information is needed on the presence of hydrolytic activity in processed foods.
• More data are needed to evaluate the potential of cyanide and food items that contain CNGs

to cause chronic effects.
• More information is needed on the long-term effect of cyanide on male reproductive system.
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Abbreviations

AFC Panel EFSA Panel on food additives, flavourings, processing aids and materials in contact
with food

ALP Alkaline phosphatase
ALT Alanine aminotransferase
ARfD Acute reference dose
ATCA 2-amino-2-thiazoline-4-carboxylic acid
ATP Adenosine triphosphate
ATSDR Agency for Toxic Substances and Disease Registry
BMD Benchmark dose
BMDL5 The 95th percentile benchmark dose lower confidence limit
BMDL10 The 90th percentile benchmark dose lower confidence limit
BMR Benchmark response
Bw Body weight
CAS Chemical Abstracts Service
Cmax Maximum concentration achieved in the plasma following dose administration
CONTAM Panel EFSA Panel on Contaminants in the Food Chain
CN Cyanide
CN� Cyanide ion
CNG Cyanogenic glycoside
CNS Central nervous system
Code Codex Alimentarius Commission
CYP Cytochrome P450
EC50 Half maximal effective concentration
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ELISA Enzyme-linked immunosorbent assay
EMA European Medicines Agency
EN European Standard
EPA Environmental Protection Agency
FAO/WHO Food and Agriculture Organization of the United Nations/World Health Organization
FEEDAP Panel EFSA Panel on Additives and Products or Substances used in Animal Feed
FSANZ Food Standards Australia New Zealand
GC-MS Gas Chromatography-Mass Spectrometry
GC-ECD Gas chromatography-Electron capture detection
GC-NPD Gas chromatography-Nitrogen phosphorous detection
GD Gestation day
Glc Glucose
HBGV Health based guidance value
HCN Hydrocyanic acid
HNL Hydroxynitrile lyase
HPLC High-performance liquid chromatography
HPLC-DAD High performance liquid chromatography high performance liquid chromatographic

method with diode-array detection
HPLC-MS High performance liquid chromatography-mass spectrometry
HPLC-UV High performance liquid chromatography with UV detection
IPCS International programme on chemical safety
JECFA Joint FAO/WHO Expert Committee on Food Additives
KCN potassium cyanide
a-KGCN a-ketoglutarat cyanhydrin
LB Lower bound
LC Left-censored
LC-MS/MS Liquid chromatography-tandem mass spectrometry
LD50 Median lethal dose
LDH Lactate dehydrogenase
LOAEL Lowest observed adverse effect level
LOD Limit of detection
LOQ Limit of quantification
ML Maximum level
MS Mass spectrometry
MS/MS Tandem mass spectrometry
MPST 3-mercaptopyruvate:cyanide sulfurtransferase
NOAEL No observed adverse effect level
NTP National toxicology programme
P5 5th percentile
P95 95th percentile
PMTDI Preliminary tolerable daily intake
PND Postnatal day
SD Standard deviation
SDWH Scientific data warehouse
SSD1 Standard sample description version 1
T3 Triiodothyronine
T4 Thyroxine
TDI Tolerable daily intake
tmax The time at which Cmax is attained
ToR Terms of reference
TSH Thyroid-stimulating hormone
UB Upper bound
UF Uncertainty factor
UDP-Glc Uridine diphosphoglucose
UGT Uridine diphosphoglucossyl transferase
UV Ultraviolet
WHO World Health Organization
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Appendix A – Identification and selection of relevant scientific literature
and reports

Formation, Occurrence, Exposure

Search terms TOPIC: (“hydrocyanic acid” OR “cyanogenic glycosides” OR cyanide OR
amygdalin OR prunasin OR “prussic acid” dhurrin OR linamarin or lotaustralin
OR linustatin OR taxiphyllin OR triglochinin OR) AND TOPIC: (occurrence OR
exposure OR levels OR concentrate* OR formation

Numbers of papers retrieved 183

Papers selected as relevant 68

Toxicokinetics

Search terms TOPIC: (“hydrocyanic acid” OR “cyanogenic glycosides” OR cyanide OR
amygdalin OR prunasin OR “prussic acid” dhurrin OR linamarin or lotaustralin OR
linustatin OR taxiphyllin OR triglochinin OR) AND TOPIC: (toxicokinetic* OR
metabolism OR distribution OR excretion OR absorption OR distribution OR
biomarker ORmode of action OR biotransformation OR elimination OR reduction
OR detoxification OR extraction)

Numbers of papers retrieved 109

Papers selected as relevant 5

Food, Processing

Search terms TOPIC: (“hydrocyanic acid” OR “cyanogenic glycosides” OR cyanide OR
amygdalin OR prunasin OR “prussic acid” dhurrin OR linamarin or lotaustralin
OR linustatin OR taxiphyllin OR triglochinin OR) AND TOPIC: (apricot OR
sorghum OR cassava OR flax OR linseed OR apple OR peach OR plum OR
nectarine OR bamboo OR almond OR lima bean OR cherry OR marzipan OR
stone fruit liquor OR amarett* OR persipan OR soy* OR fruit marc spirit OR
nougat

Numbers of papers retrieved 162

Papers selected as relevant 50

Toxicity

Search terms TOPIC: (“hydrocyanic acid” OR “cyanogenic glycosides” OR cyanide OR
amygdalin OR prunasin OR “prussic acid” dhurrin OR linamarin or lotaustralin
OR linustatin OR taxiphyllin OR triglochinin AND TOPIC: (toxicity OR toxi* OR
acute OR subacute OR subchronic OR chronic OR mutagen* OR carcino* OR
genotox* OR reprotox* OR nephrotox* OR neurotox* OR hepatotox* OR
immunotox* OR haemotox* OR hematotox* OR cytotox* OR develop* toxicity
OR thyroid OR endocri* OR poisoning OR incidental poisoning OR rat OR
mouse OR lab animal OR animal* OR case studies)

Numbers of papers retrieved 152

Papers selected as relevant 40

Human observations

Search terms TOPIC: (“hydrocyanic acid” OR “cyanogenic glycosides” OR cyanide OR
amygdalin OR prunasin OR “prussic acid” dhurrin OR linamarin or lotaustralin
OR linustatin OR taxiphyllin OR triglochinin AND TOPIC: (biomarker OR
biological marker OR case studies OR incidental poisoning OR poisoning OR
human poisoning)

Numbers of papers retrieved 34

Papers selected as relevant 15

Database used Web of Science

Time limit 2012–2017

Date of search 22 June 2017

Total numbers retrieved
(after removal of duplicates)

604

Number considered
potentially relevant

178
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Appendix B – Identification and selection of relevant scientific literature
and reports in the field of acute effects in humans

Acute effects in humans

Search terms hydrocyanic acid OR cyanogenic glycosides OR amygdalin OR prunasin OR
prussic acid OR dhurrin OR linamarin or lotaustralin OR linustatin OR
taxiphyllin OR triglochinin AND TOPIC: human case studies OR incidental
human poisoning OR poisoning OR human poisoning OR acute poisoning

Numbers of papers retrieved 667

Papers selected as
potentially relevant

60

Database used Web of Science

Time limit 1970–2017

Date of search 12 June 2017
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Appendix C – Individual and mean (in bold) concentration–time curves
observed after ingestion of the four foods (persipan paste, apricot kernels,
linseed, cassava)

Figure C.1: Individual and mean (in bold) concentration–time curves observed after ingestion of the
four foods (persipan paste, apricot kernels, linseed, cassava) (taken from Abraham et al.,
2016)
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Annex A – Dietary surveys and FoodEx categories used for exposure
assessment

Annex A can be found in the online version of this output (‘Supporting information’ section):
https://efsa.onlinelibrary.wiley.com/doi/10.2903/j.efsa.2019.5662

Description: The annex is an excel file which presents tables on dietary surveys and FoodEx
categories used for exposure assessments.

Annex B – Results of probabilistic acute dietary exposure assessment to
cyanide

Annex B can be found in the online version of this output (‘Supporting information’ section):
https://efsa.onlinelibrary.wiley.com/doi/10.2903/j.efsa.2019.5662

Description: The annex is an excel file which presents tables on the results of probabilistic acute
dietary exposure assessment to cyanide.

Annex C – Results of chronic dietary exposure assessment to cyanide

Annex C can be found in the online version of this output (‘Supporting information’ section):
https://efsa.onlinelibrary.wiley.com/doi/10.2903/j.efsa.2019.5662

Description: The annex is an excel file which presents tables on the results of chronic dietary
exposure assessment to cyanide.

Annex D – Average acute exposure per food category in children

Annex D can be found in the online version of this output (‘Supporting information’ section):
https://efsa.onlinelibrary.wiley.com/doi/10.2903/j.efsa.2019.5662

Description: The annex is an excel file which presents tables on the average acute exposure per
food category in children.
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