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Lignin degradation is a key process for carbon recyc-

ling in forests and other land ecosystems, as well for

industrial utilization of lignocellulosic materials (e.g. in

paper manufacture or ethanol production). The pro-

cess has been defined as an enzymatic combustion

where lignin aromatic units are oxidized by hydrogen

peroxide generated by extracellular oxidases in a reac-

tion catalyzed by high-redox-potential peroxidases [1].

Several oxidases have been reported as being

potentially involved in hydrogen peroxide generation

by ligninolytic fungi. However, some of them can be

discounted because of their intracellular location, and

only extracellular glyoxal oxidase, pyranose-2-oxidase

and aryl-alcohol oxidase (AAO) are currently consid-

ered to be involved in lignin biodegradation. The

model basidiomycete Phanerochaete chrysosporium

produces the two former enzymes [2,3]. In contrast,

extracellular AAO has been reported in ligninolytic
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Aryl-alcohol oxidase provides H2O2 for lignin biodegradation, a key pro-

cess for carbon recycling in land ecosystems that is also of great biotechno-

logical interest. However, little is known of the structural determinants of

the catalytic activity of this fungal flavoenzyme, which oxidizes a variety of

polyunsaturated alcohols. Different alcohol substrates were docked on the

aryl-alcohol oxidase molecular structure, and six amino acid residues sur-

rounding the putative substrate-binding site were chosen for site-directed

mutagenesis modification. Several Pleurotus eryngii aryl-alcohol oxidase

variants were purified to homogeneity after heterologous expression in

Emericella nidulans, and characterized in terms of their steady-state kinetic

properties. Two histidine residues (His502 and His546) are strictly required

for aryl-alcohol oxidase catalysis, as shown by the lack of activity of differ-

ent variants. This fact, together with their location near the isoalloxazine

ring of FAD, suggested a contribution to catalysis by alcohol activation,

enabling its oxidation by flavin-adenine dinucleotide (FAD). The presence

of two aromatic residues (at positions 92 and 501) is also required, as

shown by the conserved activity of the Y92F and F501Y enzyme variants

and the strongly impaired activity of Y92A and F501A. By contrast, a

third aromatic residue (Tyr78) does not seem to be involved in catalysis.

The kinetic and spectral properties of the Phe501 variants suggested that

this residue could affect the FAD environment, modulating the catalytic

rate of the enzyme. Finaly, L315 affects the enzyme kcat, although it is not

located in the near vicinity of the cofactor. The present study provides the

first evidence for the role of aryl-alcohol oxidase active site residues.

Abbreviations

AAO, aryl-alcohol oxidase; FAD, flavin-adenine dinucleotide; GMC, glucose–methanol–choline.
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basidiomycetes from the genera Pleurotus, Bjerkandera

and Trametes [4–9]. The fungi from the two former

genera also synthesize aromatic metabolites, such as

p-anisaldehyde (4-methoxybenzaldehyde) and chlorin-

ated p-anisaldehyde [10,11]. It has been demonstrated

that these are the substrates for continuous production

of hydrogen peroxide required for ligninolysis by redox

cycling involving AAO and aryl-alcohol dehydrogenase

[12]. In addition to acting as the oxidizing substrate

for peroxidases, hydrogen peroxide also generates act-

ive oxygen species involved in the initial steps of

fungal attack of the plant cell wall [13].

Whereas glyoxal oxidase is a protein radical–copper

enzyme [14], both pyranose-2-oxidase and AAO are

flavoenzymes [9,15]. AAO from Pleurotus eryngii is a

monomeric glycoprotein of 70 kDa with dissociable

flavin-adenine dinucleotide (FAD) as cofactor that

catalyzes the oxidation of a variety of aromatic and

aliphatic polyunsaturated alcohols to their corres-

ponding aldehydes, using molecular oxygen as elec-

tron acceptor with concomitant production of

hydrogen peroxide (Fig. 1). The gene coding for

P. eryngii AAO was cloned [16] and expressed in

Emericella nidulans (conidial state Aspergillus nidulans)

[17]; the recombinant enzyme biochemical properties

were similar to those of nonrecombinant AAO. Con-

ditions for the crystallization of AAO purified from

Pleurotus cultures have been reported [18], but a crys-

tal structure for this enzyme has not been published

yet, probably because of glycosylation microheteroge-

neity. Therefore, a molecular model of AAO from

P. eryngii was obtained by homology modelling [19].

In the present study, molecular docking on the above

model, site-directed mutagenesis and kinetic studies

were used to identify the enzyme active site and

evaluate the role of some selected residues in the cat-

alytic mechanism of this flavooxidase.

Results

Molecular docking of AAO substrates

A molecular model for P. eryngii AAO, built using the

Aspergillus niger glucose oxidase crystal structure as

template [19], was used to localize the active site

(substrate-binding pocket) of AAO by molecular

docking. The enzyme consists of two domains, the

FAD-binding domain (bottom part) and the substrate-

binding domain (top part), and one cofactor molecule

with the adenine moiety buried in the FAD domain,

and the flavin moiety expanding to the substrate

domain (Fig. 2A).

Six AAO substrates with different molecular struc-

tures ) benzyl, p-anisyl (4-methoxybenzyl), veratryl

(3,4-dimethoxybenzyl) and cinnamyl alcohols, 2,4-hexa-

dien-1-ol, and 2-naphthalenemethanol (Fig. 1B) ) were

separately docked on AAO. Ten substrate molecules

were found after each docking calculation, and in all

cases more than 50% of them clustered together in

front of the rectus (re)-face of the isoalloxazine ring of

the FAD cofactor. This substrate location is shown in

Fig. 2A, which includes the 10 molecules of veratryl

alcohol clustering together after docking. The putative

substrate-binding pocket is connected to the protein

surface by a main channel providing direct access to

the re-side of the isoalloxazine ring, near two histidine

side chains (Fig. 2B). Some 2-naphthalenemethanol

and 2,4-hexadien-1-ol molecules docked at the sinister

(si)-side of the flavin ring, but the corresponding cavity

is some distance from FAD, and connected to the sur-

face by a long channel. Inspection of the amino acid

residues located around the putative substrate-binding

site suggested that several residues are potentially

involved in substrate oxidation by AAO (Fig. 2C).

Evaluation of AAO active site variants

Six residues potentially involved in AAO catalysis were

selected after substrate docking and modified by site-

directed mutagenesis. The different mutations were

introduced in the aao cDNA by PCR and confirmed

by DNA sequencing. The mutated cDNAs containing

their signal sequence could be expressed in E. nidulans

(under control of the inducible alcA promoter). The

aao sequence was integrated into the E. nidulans gen-

ome as confirmed by PCR.

A

B

Fig. 1. AAO catalytic cycle (A) and substrates used in molecular

docking calculations (B), including benzyl alcohol (1), p-anisyl alcohol

(2), veratryl alcohol (3), cinnamyl alcohol (4), 2-naphthalenemethanol

(5) and 2,4-hexadien-1-ol (6).
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E. nidulans transformants harbouring the aao seq-

uence produced about 200 UÆL)1 of wild-type AAO

(approximately 2 mgÆL)1) 56–74 h after induction. No

AAO activity was detected in the nontransformed

E. nidulans cultures. AAO was secreted by E. nidulans,

and the activities of the site-directed variants (when

active) could be directly detected in filtrates of 48 h

cultures of the transformants harbouring the mutated

aao sequences.

The first mutations introduced into AAO reduced

the side chains of Tyr78, Tyr92, Leu315 and Phe501 to

a methyl group. Other changes included introduct-

ion ⁄ removal of the phenolic hydroxyl in Tyr92 and

Phe501, and substitution of His502 and His546 with

leucine, serine and arginine residues. Only three of the

variants obtained, Y78A (202 ± 28 UÆL)1), Y92F

(165 ± 45 UÆL)1) and F501Y (215 ± 30 UÆL)1),

maintained activity levels in the same range of the

wild-type enzyme (191 ± 19 UÆL)1), using veratryl

alcohol as substrate. Decreased activity was found for

the L315A (16 ± 1 UÆL)1) and F501A (4 ± 1 UÆL)1)

variants. All the other variants exhibited very low

activity, such as H546R and H502R (1–2 ± 0 UÆL)1),

or null catalytic activity, such as Y92A, H502L,

H502S, H546L and H546S (< 0.5 UÆL)1), although

AAO protein was produced, as evidenced by western

blotting (data not shown). Although E. nidulans

expression has the advantage of correct protein pro-

cessing by the fungal host, limitations of the expression

and purification protocols enabled the isolation of only

those variants with some AAO activity.

Characterization of selected AAO variants

Five variants (Y78A, Y92F, L315A, F501A and F501Y)

and wild-type AAO were purified to homogeneity

A
B

C

Fig. 2. AAO molecular model after veratryl alcohol docking. (A) General scheme of AAO molecular structure (Protein Data Bank entry 1QJN),

showing secondary structure (predicted a-helices in red, and b-strands in yellow), FAD cofactor, two conserved histidine residues (His502

and His546), and 10 molecules of veratryl alcohol (VA). (B) Detail of solvent access surface, showing the entrance to the AAO active site

cavity where veratryl alcohol was located after molecular docking. FAD cofactor (isoalloxazine ring), two conserved histidine residues

(His502 and His546) and two VA molecules are shown. (C) Amino acid residues at the AAO active site, including those modified by site-

directed mutagenesis. FAD cofactor (flavin moiety si-side) and two veratryl alcohol (VA) molecules after molecular docking are also shown.

Site-directed mutagenesis of aryl-alcohol oxidase P. Ferreira et al.
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from recombinant E. nidulans cultures, with a final

A280 ⁄A463 ratio of about 10 in all cases. They showed

a single band with an apparent molecular mass of

70 kDa after SDS ⁄PAGE. The visible absorption spec-

tra of the Y78A, Y92F and F501Y variants were very

similar to that of wild-type AAO (Fig. 3A) with

absorption maxima at 387 and 463 nm, indicating that

the cofactor was in the oxidized state and correctly

incorporated. The absorption maxima of L315A were

situated at 372 and 459 nm, and the shoulder near

485 nm was not observed (Fig. 3B). The F501A vari-

ant also showed a shift of the second absorption maxi-

mum (situated around 460 nm) and decreased

absorbance at 387 nm (Fig. 3B). These spectral shifts

suggest that removal of the side chains of Leu315

and Phe501 increases the polarity of the flavin micro-

environment.

Steady-state kinetic parameters of the five variants

were determined for different alcohol substrates, and

the corresponding values are shown in Table 1, com-

pared with wild-type AAO produced also in E. nidu-

lans. Most of the variants displayed lower catalytic

efficiencies than wild-type AAO, although some of the

differences were not significant, taking into account

the standard deviations. However, no efficiency

decrease, and even an increase with some substrates,

was observed for the F501Y variant. This strongly

contrasted with the results obtained when an aromatic

side chain was absent in the F501A variant. This vari-

ant was 30–200-fold less efficient than wild-type AAO

in oxidizing the different substrates, mainly due to a

strong decrease in catalytic rate. The results obtained

for Tyr92 were similar, as the activity was lost when

an alanine residue was present (Y92A variant), and

similar efficiencies were obtained when a tyrosine

residue (wild-type AAO) or a phenylalanine residue

(Y92F variant) was present. A third aromatic residue

near the putative active site of AAO is Tyr78. How-

ever, the steady-state kinetic parameters of the Y78A

variant showed that this residue is not required for cat-

alytic activity, although some decrease in substrate

(e.g. anisyl alcohol) oxidation was observed. Finally,

the L315A variant showed decreased catalytic effi-

ciency, which was especially evident on the best AAO

substrates, such as p-anisyl alcohol (3.5-fold lower effi-

ciency).

Discussion

AAO structure and active site

AAO has been recently included in the glucose–meth-

anol–choline (GMC) oxidoreductase family [20]. This

family, named after the initial members glucose oxid-

ase, methanol oxidase and choline dehydrogenase [21],

currently consists of more than 500 protein sequences.

All of them show at least one of the two characteristic

Prosite sequences (PS000623 and PS000624 motifs)

and often an N-terminal consensus involved in FAD

binding [22]. AAO shares the highest sequence identity

(28% identity) with glucose oxidase from A. niger [23],

and some hypothetical proteins such as choline dehy-

drogenase from Vibrio vulnificus (up to 34% identity)

[24] (multiple alignment is provided in supplementary

Fig. S1).

The AAO molecular model [19] has an FAD-bind-

ing domain formed by two main b-sheets and a vari-

able number of a-helices, whose structure is

conserved in the members of the GMC family whose

structure has been solved [25–31], and a substrate-
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Fig. 3. Electronic absorption spectra of AAO variants. The spectra

of wild-type AAO (continuous line) and site-directed variants were

recorded in 10 mM sodium phosphate, pH 5.5 (at 78 lM AAO con-

centration). (A) Variants with similar spectra: Y78A (ÆÆÆÆ), Y92F (- - - -)

and F501Y (- Æ - Æ). (B) Variants with differences in the spectra:

L315A (- - - -) and F501A (- Æ - Æ).
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binding domain including a large b-sheet and several

a-helices, whose general structure and architecture of

the catalytic site is more variable, in agreement with

the different types of substrate of GMC oxidoreduc-

tases [21,32].

Molecular docking for localizing the substrate-bind-

ing pocket included six different polyunsaturated

primary alcohols with the hydroxyl group in Ca, repre-
sentative of the range of AAO substrates [9,19,33].

Most of these alcohols docked in front of the re-side

of the isoalloxazine ring of FAD [34], with the benzylic

carbon at 3.9 Å from its N5. The most frequently

encountered substrate orientation was similar to that

found in the crystal structure of the cholesterol oxid-

ase–dehydroisoandrosterone complex [35]. After dock-

ing, six residues potentially involved in AAO catalysis,

Tyr78, Tyr92, Leu315, Phe501, His502 and His546,

were investigated by site-directed mutagenesis. The

roles of the above aromatic and histidine residues are

discussed below. Moreover, the lower kcat and the

modified spectrum of the Leu315 variant compared

with wild-type AAO suggested that this residue affects

the FAD environment, even without being located in

the near vicinity of the cofactor, but further studies

are required.

Conserved histidines at the AAO active site

AAO His502 is fully conserved in the sequences of the

best-known GMC oxidoreductases, including glucose

oxidase [23,32], cholesterol oxidase [36,37], choline

oxidase [38], hydroxynitrile lyase [31] and the flavin

domain of cellobiose dehydrogenase [39], whereas

His546 is conserved in glucose oxidase and hydroxynit-

rile lyase, but replaced by asparagine in choline oxid-

ase, the flavin domain of cellobiose dehydrogenase and

cholesterol oxidase. The positions of the conserved his-

tidine and histidine ⁄asparagine residues near the FAD

isoalloxazine ring of four of the above GMC oxido-

reductases are shown in Fig. 4. Spatial conservation of

these residues suggests a similar mechanism of sub-

strate activation during catalysis. The current consen-

sus mechanism for most GMC oxidoreductases

involves removal of the substrate hydroxyl proton

(alkoxide formation) by an active site base contribu-

ting to the transfer of a hydride from the substrate

a-carbon to the flavin cofactor [40–46].

Site-directed mutagenesis suggested that the con-

served histidine residue in cellobiose dehydrogenase [47]

and cholesterol oxidase [27] is the active site base

involved in substrate oxidation, although other basic

Table 1. Steady-state kinetic constants of wild-type AAO and five AAO variants expressed in Emericella nidulans on different alcohols.

Means and standard deviations of Km (lM), kcat (s)1) and efficiency as kcat ⁄ Km (s)1ÆmM
)1) from the normalized Michaelis–Menten equation

after nonlinear fit of data (oxidation tests were carried out in 100 mM sodium phosphate, pH 6.0, at 24�C).

Benzyl alcohol m-Anisyl alcohol p-Anisyl alcohol Veratryl alcohol 2,4-Hexadien-1-ol

Wild-type

Km 632 ± 158 227 ± 105 27 ± 4 540 ± 27 94 ± 5

kcat 30 ± 2 15 ± 2 142 ± 5 114 ± 2 119 ± 2

kcat ⁄ Km 47 ± 9 65 ± 24 5230 ± 615 210 ± 5 1270 ± 55

Y78A

Km 639 ± 68 293 ± 7 53 ± 1 492 ± 26 168 ± 17

kcat 25 ± 1 8 ± 1 90 ± 2 83 ± 1 177 ± 5

kcat ⁄ Km 39 ± 3 28 ± 1 1700 ± 89 168 ± 7 1050 ± 87

Y92F

Km 985 ± 33 301 ± 6 39 ± 1 460 ± 12 113 ± 2

kcat 33 ± 1 26 ± 1 139 ± 1 116 ± 2 206 ± 2

kcat ⁄ Km 33 ± 1 85 ± 2 3530 ± 105 253 ± 5 1830 ± 29

L315A

Km 719 ± 34 211 ± 10 40 ± 1 844 ± 30 114 ± 20

kcat 19 ± 1 12 ± 1 60 ± 1 76 ± 1 56 ± 2

kcat ⁄ Km 26 ± 1 59 ± 2 1490 ± 44 89 ± 3 492 ± 74

F501A

Km 2550 ± 172 734 ± 27 26 ± 1 380 ± 35 263 ± 26

kcat 1 ± 0 1 ± 0 3 ± 0 3 ± 0 1 ± 0

kcat ⁄ Km 0 ± 0 1 ± 0 102 ± 2 7 ± 1 6 ± 1

F501Y

Km 614 ± 37 215 ± 18 15 ± 1 317 ± 21 81 ± 6

kcat 27 ± 1 17 ± 1 111 ± 2 86 ± 1 110 ± 2

kcat ⁄ Km 45 ± 2 78 ± 6 7660 ± 419 271 ± 15 1370 ± 86

Site-directed mutagenesis of aryl-alcohol oxidase P. Ferreira et al.
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residues could play this role in the latter enzyme [28,48].

By contrast, in choline oxidase the conserved His466

(homologous to AAO His502) contributes to the stabil-

ization of the substrate alkoxide formed by the action

of an unidentified base [49,50]. His516 and His559 of

glucose oxidase have been suggested as the active site

base involved in catalysis [44,51]. In AAO, substitution

of His502 and His546 with leucine and serine residues

resulted in completely inactive variants, whereas some

activity (although 100–200-fold lower) was detected

when they were substituted with arginine, which could

still contribute to the stabilization of a substrate alkox-

ide. As both histidine residues are equally required for

AAO activity, and they are situated at similar distances

from the hydroxyl of the docked substrate, they could

cooperate in facilitating the hydride transfer from sub-

strate to FAD. The decrease of activity of the AAO

H502A and H546A variants (>500-fold) is higher than

found for the choline oxidase H466A variant (20-fold

decrease) [49], supporting a direct role of these histi-

dines in substrate activation by AAO. In the case of

cholesterol oxidase, the H447A variant could not be

expressed [52]; however, an activity decrease similar to

that found in AAO was found for the H689A variant of

cellobiose dehydrogenase [47].

Aromatic residues in the AAO active site

Several aromatic amino acid residues have been repor-

ted to be involved in binding of aromatic substrate

by the flavoenzymes p-hydroxybenzoate hydroxylase

(Tyr201, Tyr222 and Tyr385) [53], d-amino acid oxid-

ase (Tyr55, Tyr224 and Tyr228) [54], and vanillyl-alco-

hol oxidase (Tyr108, Tyr187, Phe424 and Tyr503) [55].

The last of these is related to AAO, because it also

oxidizes aromatic alcohols, but vanillyl-alcohol oxidase

oxidizes phenolic benzylic alcohols, whereas the AAO

substrates are nonphenolic alcohols.

Three aromatic amino acid residues located in the

putative substrate-binding site of AAO were modified

by site-directed mutagenesis. Tyr78 did not seem to be

involved in catalysis, as the kinetic properties of the

Y78A variant were not very different from those of

wild-type AAO. This is in agreement with the AAO

molecular model, where the Tyr78 side chain points

away from the active site. However, removal of the aro-

matic side chain from either Tyr92 or Phe501 resulted

in nearly complete loss of activity. By contrast, remov-

ing or introducing a side chain phenolic hydroxyl

(Y92F and F501Y variants) did not reduce activity.

This supports the view that these residues are not

directly involved in substrate activation. In a similar

way, the conserved Tyr223 at the active site of d-amino

acid oxidase can be replaced by a phenylalanine residue

without affecting activity [56]. Although a small

decrease (3–4-fold) in the affinity of the F501A variant

for most substrates was observed, the main effect of the

mutation was a large decrease (20–80-fold) in catalytic

rate. Simultaneously, a decrease in AAO redox poten-

tial of over 50 mV was found when Phe501 was

B

C D

A

H502

H546

H459

H497

H689

N732

H447

N485

Fig. 4. Conserved residues at the active site

of four GMC oxidoreductases. The positions

of conserved histidine and histidine ⁄ aspara-

gine at the re-side of the FAD isoalloxazine

ring are shown. (A) AAO (Protein Data Bank

entry 1QJN). (B) Hydroxynitrile lyase (Pro-

tein Data Bank entry 1JU2). (C) Cholesterol

oxidase (Protein Data Bank entry 1COY).

(D) Cellobiose dehydrogenase (Protein Data

Bank entry 1KDG).

P. Ferreira et al. Site-directed mutagenesis of aryl-alcohol oxidase

FEBS Journal 273 (2006) 4878–4888 ª 2006 The Authors Journal compilation ª 2006 FEBS 4883



replaced by an alanine, suggesting that changes at this

position can modulate the redox potential of the

enzyme (F-D Munteanu, P Ferreira, FJ Ruiz-Dueñas,

ATMartı́nez and A Cavaco-Paulo, unpublished results).

These facts could be correlated with the modified elec-

tronic absorption spectrum of the F501A variant [47].

Interestingly, an aromatic residue homologous to

AAO Phe501, contiguous with a fully conserved

histidine, is present in most GMC oxidoreductase

sequences (phenylalanine in AAO; tyrosine in A. niger

glucose oxidase, cholesterol oxidase and choline dehy-

drogenase and oxidase; and tryptophan in Penicillium

amagasakiense glucose oxidase, hydroxynitrile lyase and

cellobiose dehydrogenase). No information on the role

of this residue in other GMC oxidoreductases is

available. In contrast, no aromatic residues at the posi-

tion of AAO Tyr92 are present in any of the GMC

oxidoreductase sequences mentioned above. However,

inspection of the crystal structures revealed an aromatic

residue from a different region of the glucose oxidase

backbone (Tyr68) whose side chain occupies approxi-

mately the same position as that of AAO Tyr92 (Fig. 5).

The involvement of this residue in glucose binding by

glucose oxidase has been suggested after modelling [26].

Moreover, site-directed mutagenesis of the homologous

residue in the Penicillium amagasakiense glucose oxidase

(Tyr73) confirmed its involvement in catalysis.

However, a significant difference from AAO is that

removal of the phenolic hydroxyl caused a 98%

decrease in glucose oxidase catalytic efficiency [51],

whereas activity is maintained in the Y92F AAO

variant. It seems that Tyr92 in AAO is less essential for

substrate binding than Tyr73 in glucose oxidase,

perhaps because there is no need for a hydrogen bond

interaction; however, the phenyl ring presence is critical.

Conclusions

The catalytic and spectral properties of AAO, an unu-

sual oxidase of the GMC oxidoreductase family that

does not thermodynamically stabilize an FAD semiqui-

none intermediate or form a sulphite adduct, have

been recently described [33]. In the present study, the

first evidence for the involvement of some amino acid

residues in the catalytic activity of this enzyme

has been obtained by site-directed mutagenesis after

in silico docking. Two histidine residues (His502 and

His546) in the vicinity of the flavin ring were found to

be strictly required for AAO activity. One of these his-

tidines is most likely involved in activation of the alco-

hol substrates by accepting the hydroxyl proton before

hydride transfer to FAD, whereas the second one

could be needed for binding and positioning of the

substrate. Two aromatic residues (Tyr92 and Phe501)

were also required for AAO activity, although this was

not affected by the phenolic ⁄nonphenolic nature of

their aromatic side chains. An aromatic residue at

position Phe501 of AAO is conserved in all GMC

oxidoreductases, although its role has not been des-

cribed. In AAO, comparison of the F501A and F501Y

variants suggested that this residue could modulate the

redox potential of the FAD, affecting the enzyme kcat
and electronic absorption spectrum, rather than being

involved in substrate binding, as initially thought.

These first AAO structure–function studies will be

completed in the future to give us a better understand-

ing of the catalytic mechanisms and biotechnological

potential of an oxidase acting on unsaturated alcohols

with very different molecular structures.

Experimental procedures

Chemicals

Benzyl, m-anisyl (3-methoxybenzyl), p-anisyl and veratryl

alcohols, and 2,4-hexadien-1-ol, were obtained from Sigma-

Aldrich (St Louis, MO, USA).

H502/H516

H546/H559

Y92

FAD

Y68

Fig. 5. AAO Tyr92 and glucose oxidase Tyr68 near FAD. Superposi-

tion of AAO (pink) and glucose oxidase (green), showing the similar

position of side chains of two tyrosines (AAO Tyr92 and glucose

oxidase Tyr68) from different backbone regions (si-side of the FAD

isoalloxazine ring). FAD and conserved AAO His502 and His546,

and glucose oxidase His516 and His559 (re-side of the FAD ring),

are also shown (glucose oxidase residues in italics). From AAO and

glucose oxidase 1GAL and 1QJN, respectively.

Site-directed mutagenesis of aryl-alcohol oxidase P. Ferreira et al.
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Fungal strains and plasmids

cDNA encoding P. eryngii AAO with its own signal peptide

was cloned into plasmid palcA, and the resulting vector

(pALAAO) was used for site-directed mutagenesis, and

transformation of E. nidulans biA1, metG1, argB2 (IJFM

A729), as described below [17].

Site-directed mutagenesis

AAO variants were obtained by PCR with the Quikchange

site-directed mutagenesis kit from Stratagene (La Jolla, CA,

USA), using the plasmid pALAAO as template, the primers

including mutations (underlined) at the corresponding

triplets (bold) (only direct constructions are shown)

(Table 2).

Expression and purification of wild-type enzyme

and AAO variants

Protoplasts of E. nidulans (argB– strain) were prepared, and

transformed with the pALAAO plasmids containing the

different mutations; the transformants were then screened

for arginine prototrophy [17]. Integration of the AAO

cDNA into the E. nidulans genome was confirmed by PCR.

Wild-type AAO and the different site-directed variants were

produced in E. nidulans cultures (28 �C and 180 r.p.m.)

grown in threonine medium, after 24 h of growth in min-

imal medium [17]. The time course of extracellular AAO

activity was followed for 72 h after threonine induction.

Secretion of AAO protein was confirmed by western blot-

ting. For this, protein SDS ⁄PAGE was run, and bands

were transferred to nitrocellulose membranes, and incuba-

ted overnight with antibody to AAO [57]; AAO was then

detected with the ECLT chemiluminescence system (Amer-

sham, Uppsala, Sweden). Site-directed mutagenesis variants

and wild-type AAO were purified from the induction

medium after 48 h. Purification included Sephacryl S-200

and MonoQ chromatography following the procedure

developed for AAO from P. eryngii cultures [9], that was

then applied to recombinant AAO from E. nidulans [17].

UV–visible spectra (see below) and SDS ⁄PAGE in 7.5%

gels were used to confirm the purity of the enzyme.

AAO activity and kinetics

AAO activity was measured spectrophotometrically by

monitoring the oxidation of veratryl alcohol to veratralde-

hyde [9]. The reaction mixture contained 8 mm veratryl

alcohol in air-saturated 100 mm sodium phosphate, pH 6.0.

One activity unit is defined as the amount of enzyme con-

verting 1 lmol of alcohol to aldehyde per minute at 24 �C.
Steady-state kinetics was studied at 24 �C in 100 mm

sodium phosphate, pH 6.0. The rates of oxidation of

benzyl, m-anisyl, p-anisyl and veratryl alcohols, and 2,4-

hexadien-1-ol, were determined spectrophotometrically.

Molar absorption coefficients of benzaldehyde (e250 13 800

m
)1Æcm)1), m-anisaldehyde (e314 2540 m

)1Æcm)1), p-anisalde-

hyde (e285 16 950 m
)1Æcm)1) and veratraldehyde (e310 9300

m
)1Æcm)1) were from Guillén et al. [9], and that of 2,4-hexa-

dien-1-al (e280 30 140 m
)1Æcm)1) was from Ferreira et al.

[33]. No kinetic constants were determined for 2-naphtha-

lenemethanol, due to low solubility. The nonlinear regres-

sion tool of the sigmaplot (Systat Software Inc., Richmond,

CA, USA) program was used to fit the steady-state

kinetics data (three replicates) using Eqn (1) and Eqn (2):

f ¼ AX

K þ X
ð1Þ

f ¼ BX

1þ BX=A
ð2Þ

where A is the maximal turnover rate (kcat), X is the sub-

strate concentration, K is the Michaelis constant (Km), and

B is the catalytic efficiency (kcat ⁄Km). Mean and standard

deviations were obtained from the normalized Michaelis–

Menten equations.

AAO electronic absorption spectra

UV–visible spectra were recorded at 24 �C in 100 mm

sodium phosphate (pH 6.0), using a Hewlett Packard

(Loveland, CO, USA) 8453 spectrophotometer. The molar

absorption of AAO-bound FAD, 10 280 m
)1Æcm)1 at

463 nm [33], was used to estimate AAO concentrations.

Molecular docking and sequence alignment

Automated simulations were conducted with the program

autodock 3.0 (Scrips Research Institute, La Jolla, CA,

USA) [58] to dock benzyl, p-anisyl, veratryl and cinnamyl

alcohols, 2,4-hexadien-1-ol and 2-naphthalenemethanol sub-

strates on the AAO molecular model (Protein Data Bank

Table 2. Oligonucleotides used as primers for PCR site-directed

mutagenesis.

Mutations Primer sequences (5¢- to 3¢)

Y78A GGTCGGTCAATTGCGGCTCCTCGCGGCCGTATG
Y92A GGTCTAGCTCTGTTCACGCCATGGTCATGATGCG
Y92F GGTCTAGCTCTGTTCACTTCATGGTCATGATGCG
L315A CCGACCATTTGGCCCTTCCTGCTGCC
F501A CGCCAACACGATTGCCCACCCAGTTGGAACGG
F501Y GCCAACACGATTTTACGACCAGTTGGAACGGC
H502L GCCAACACGATTTTCCTCCCAGTTGGAACGGCC
H502S GCCAACACGATTTTCAGCCCAGTTGGAACGGCC
H502R GCCAACACGATTTTCCGCCCAGTTGGAACGGCCv
H546L CCCTTCGCGCCCAACGCACTTACCCAAGGACCG
H546S CCCTTCGCGCCCAACGCAAGTACCCAAGGACCG
H546R CCCTTCGCGCCCAACGCACGCACCCAAGGACCG
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entry 1QJN) [19]. Polar hydrogen atoms were added to the

molecular model according to the valence and isoelectric

point of each residue. Two different methods of atomic

partial charge assignment were used: Kollman charges

were assigned to the protein, and Gasteiger charges to the

ligands.
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                                     A3        H1            A2 
                                      ----  ------------      ----                  
AAO       ------------------------ADFDYVVVGAGNAGNVVAARLTEDPDVSVLVLEAGVSDENVLGAEAPLLAPG   52 
CHD       -----------------------MKEYDFIVVGGGSAGCVLASRLTEDPDVTVCLLEAGGKDSSPL-IHTPVGMVA   52 
CHO       -------------MHIDNIENLSDREFDYIVVGGGSAGAAVAARLSEDPAVSVALVEAGPDDRGVP-EVLQLDRWM   62 
GOX-1     -------SNGIEASLLTDPKDVSGRTVDYIIAGGGLTGLTTAARLTENPNISVLVIESGSYESDRGPIIEDLNAYG   69 
GOX-2     --YLPAQQIDVQSSLLSDPSKVAGKTYDYIIAGGGLTGLTVAAKLTENPKIKVLVIEKGFYESNDGAIIEDPNAYG   74 
HNL       LATTSDHDFSYLSFAYDATDLELEGSYDYVIVGGGTSGCPLAATLSEK--YKVLVLERG---SLPTAYPNVLTADG   71 
NAA       ------------------------TPYDYIIVGAGPGGIIAADRLSEAGKK-VLLLERGGPSTKQTGGTYVAPWAT   52 
COX-1     ---------------------DNGGYVPAVVIGTGYGAAVSALRLGEAG-VQTLMLEMG-------QLWNQPGPDG   47 
COX-2     ---------------APSRTLADGDRVPALVIGSGYGGAVAALRLTQAG-IPTQIVEMG-------RSWDTPGSDG   53 
Consensus                            D VV G G  G   A RL       V  LE G                  
                                        consensus 1 (ADP-binding) 
                      D4            D5 *            ** E4        H2              H3 
                    ------        -----               ---   -----------      --------- 
AAO       LVPNSIFDWNYTTTAQAGYN----GRSIAYPRGRMLGGSSSVHYMVMMRGSTEDFDRYAAVTGDEGWNWDNIQQFV   124 
CHD       MMPTKINNWGFETIPQAGLN----GRKGYQPRGKTLGGSSSINAMMYARGHRYDYDLWASL-GNVGWSYDDCLPYF   123 
CHO       ELLESGYDWDYPIEPQENGNS-----FMRHARAKVMGGCSSHNSCIAFWAPREDLDEWEAKYGATGWNAEAAWPLY   133 
GOX-1     DIFGSSVDHAYETVELATNN-----QTALIRSGNGLGGSTLVNGGTWTRPHKAQVDSWETVFGNEGWNWDNVAAYS   140 
GOX-2     QIFGTTVDQNYLTVPLINN------RTNNIKAGKGLGGSTLINGDSWTRPDKVQIDSWEKVFGMEGWNWDNMFEYM   144 
HNL       FVYNLQQEDDGKTPVERFVS----EDGIDNVRGRVLGGTSIINAGVYARAN-------TSIYSASGVDWD------   130 
NAA       SSGLTKFDIPGLFESLFTDSNPFWWEDGIDNVRGRVLGGTSIINAGVYARAN------TSIYSASGVDWD----YT   116 
COX-1     NIFCGMLNPDKRSSWFKNR------------------TEAPLGSFLWLDVVNRNIDPYAGVLDRV--NYDQMSVYV   103 
COX-2     KIFCGMLNPDKRSMWLADK------------------TDQPVSNF-MGFGINKSIDRYVGVLDSE--RFSGIKVYQ   108 
Consensus                                 GR LGGSS VN   W  G     D                     
                                            consensus 2 (PS00623) 
              E1       H4                E2                H5                    C1 
          -- ---   ---------            ----        ----------------            ---  
AAO       RKNEMVVPPADNHNTSGEFIPAV-HGTNGSVSISLPGFPTPLDDRVLATTQ-EQSEEFFFNPDMGTGHPLGISWSI   198 
CHO       KR-------LETNEDAGPDAPH--HGDSGPVHLMNVPPKDPTG--VALLDACEQAGIPRAKFNTGTTVVNGANFFQ   188 
CHD       KKAE------NNEIHRDEF-----HGQGGPLNVTNLRSPSDVLERYLAACE---SIGVPRNPDINGAQQLGAMAT    198 
GOX-1     LQAERARAPNAKQIAAGHYFNASCHGVNGTVHAGPRDTGDDYSPIVKALMSAVEDRGVPTKKDFGCGDPHGVSMFP   216 
GOX-2     KKAEAARTPTAAQLAAGHSFNATCHGTNGTVQSGARDNGQPWSPIMKALMNTVSALGVPVQQDFLCGHPRGVSMIM   220 
HNL       ----------------MDLVNQTYEWVEDTIVYKPNS-----QSWQSVTKTAFLEAGVHPNHGFSLDHEEGTRITG   185 
NAA       -----------------SKLSSRLPSTDHPSTDGQRYLEQSFNVVSQLLKGQGYNQATINDNPNYKDHVFGYSAFD   177 
COX-1     ----------GRGVGGGSLVNG------GMAVEPKRSYFEEILPRVDSSE--MYDRYFPRANSMLRVNHIDTKWFE   161 
COX-2     ----------GRGVGGGSLVNG------GMAVTPKRNYFEEILPSVDSNE--MYNKYFPRANTGLGVNNIDQAWFE   166 
Consensus                                                                              
 
            E3        H6            A1     B1                 B2                 A4 
           ----     ------         ----   ---                ----               ----   
AAO       ASVG-NGQRSSSSTAYLRPAQSRPNLSVLINAQVTKLVNSGTTNGLPAFRCVEYAEQEGAPTT-TVCAKKEVVLSA   272 
CHD       VTQI-NGERCSAAKAYLTPHLDRPNLTVLTQATTHKILFDGKRA-----VGVEYG-QKGH-TFQIRC-KREVILSA   255 
CHO       INRRADGTRSSSSVSYIHPIVEQENFTLLTGLRARQLVFDADRR----CTGVDIVDSAFGHTHR-LTARNEVVLST   269 
GOX-1     NTLHEDQVRSDAAREWLLPNYQRPNLQVLTGQYVGKVLLSQNGT-TPRAVGVEFGTHKGNTH--NVYAKHEVLLAA   289 
GOX-2     NNLDENQVRVDAARAWLLPNYQRSNLEILTGQMVGKVLFKQTAS-GPQAVGVNFGTNKAVNF--DVFAKHEVLLAA   293 
HNL       STFDNKGTR--HAADELLNKGNSNNLRVGVHASVEKIIFSNAPG--LTATGVIYRDSNGTPHQAFVRSKGEVIVSA   257 
CDH       FLN---GKRAGPVATYLQTALARPNFTFKTNVMVSNVVRNGSQILGVQTNDPTLGPNGFIP----VTPKGRVILSA   246 
COX-1     DTEWYKFARVSREQAGKAGLGTVFVPNVYDFGYMQREAAGEVPKSALATE-VIYGNNHGK---QSLDKTYLAAALG   233 
COX-2     STEWYKFARTGRKTAQRSGFTTAFVPNVYDFEYMKKEAAGQVTKSGLGGE-VIYGNNAGK---KSLDKTYLAQAAA   238 
Consensus                                                                         
 
                 H7         H7’              D1     *  C5             C2     H8       
            ----------   --------           ---      -----           ---- ------- ---- 
AAO       GSVGTPILLQLSGIGDENDLSSVGIDTIVNNPSVGRNLSDHLLLPAAFFVNSNQTFDNIFRDSSEFNVDLDQWTNT   348 
CHD       GAFGSPQLLLLSGVGAKKDLQPYGIQQVHSLPGVGENLQDHIDLVHTYRCSAKRDTFGVSLRMASELTKALPQWIT   331 
CHO       GAIDTPKLLMLSGIGPAAHLAEHGIEVLVDSPGVGEHLQDHPEGVVQFEAKQP-----------------------   322 
GOX-1     GSAVSPTILEYSGIGMKSILEPLGIDTVVDLP-VGLNLQDQTTATVRSRITSAGAG----QGQAAWFATFNETFGD   360 
GOX-2     GSAISPLILEYSGIGLKSVLDQANVTQLLDLP-VGINMQDQTTTTVSSRASSAGAG----QGQAVFFANFTETFGD   364 
HNL       GTIGTPQLLLLSGVGPESYLSSLNIPVVLSHPYVGQFLHDNPRNFINILPPNP----------------IEPTIVT   317 
CDH       GAFGTSRILFQSGIGPTDMIQTVQSNPTAAAALPPQNQWINLPVGMNAQDNPSINLVFTHPSIDAYENWADVWSNP   322 
COX-1     TGKVTIQTLHQVKTIRQTKDGGYALTVEQKD-TDGKLLATKEISCRYLFLGAGSLG----STELLVRARDTGTLPN   304 
COX-2     TGKLTITTLHRVTKVAPATGSGYSVTMEQID-EQGNVVATKVVTADRVFFAAGSVG----TSKLLVSMKAQGHLPN   305 
Consensus GS  TP LL  SGIG                                                              
        consensus 3 (PS00624) 
             H9            H9’                H10             *C3         C4        
          ----------  -----------     ------------------     ------    -------      -- 
AAO       RTGPLTALIANHLAWLRLPSNSSIFQTFPDPAAGPNSAHWETIFSNQWFHPAIPRPDTGSFMSVTNALISPVARGD   424 
CHD       QRTGKMSSNFAEGIGFLC-SDDSV--EIPD---------LEFVFVVAVVDDHARKIHASHGFSSHVTLLRPKSVGR   395 
CHO       -------MVAESTQWWEIG----IFTPTEDGLDRPDLMMHYGSVPFDMNTLRHGYPTTENGFSLTPNVTHARSRGT   387 
GOX-1     YSEKAHELLNTKLEQWAEEAVARGGFHNTTALLIQYENYRDWIVNHNVAYSELFLDTAGVASFDVWDLLPFTRGYV   436 
GOX-2     YAPQARDLLNTKLDQWAEETVARGGFHNVTALKVQYENYRNWLLDEDVAFAELFMDTEGKINFDLWDLIPFTRGSV   440 
HNL       VLGISNDFYQCSFSSLPFTTPPFGFFPSSSYPLP------------NSTFAHFASKVAGPLSYGSLTLKSSSNVRV   381 
CDH       RPADAAQYLANQSGVFAGASPKLNFWRAYSGSDGFTRYAQGTVRPGAASVNSSLPYNASQIFTITVYLSTGIQSRG   398 
COX-1     LNSEVGAGWGPNGNIMTARANHMWNPTGAHQSSIPALGIDAWDNSDSSVFAEIAPMPAGLETWVSLYLA-------   373 
COX-2     LSSQVGEGWGNNGNIMVGRANHMWDATGSKQATIPTMGIDNWADPTAPIFAEIAPLPAGLETYVSLYLA-------   378 
Consensus                                                                              



            D2         D3           H11                   C6               H12        
          -----      -----    --------------------       ----        --------------    
AAO       IKLATSNPFDKPLINPQYLSTEFDIFTMIQAVKSNLRFLSGQAWADFVIRPFDP--RLRDPTDDAAIESYIRDNAN   498 
CHD       VKLNSTNPYDVPHIDPAFFTHPEDMKIMIKGWKKQQKMLESSAFDDIRGESFYP--V--DASDDKAIEQDIRNRAD   467 
CHO       VRLRSRDFRDKPMVDPRYFTDPEGHDMRVMVAGIRKAREIAAQPAMAEWTGRELSPGVEAQTD-EELQDYIRKTHN   462 
GOX-1     HILDKDPYLHHFAYDPQYFLNELDLLGQAAATQLARNISNSGAMQTYFAGETIPGDNLAYDADLSAWTEYIPYHFR   512 
GOX-2     HILSSDPYLWQFANDPKFFLNEFDLLGQAAASKLARDLTSQGAMKEYFAGETLPGYNLVQNATLSQWSDYVLQNFR   516 
HNL       SPNVKFNYYSNLTDLSHCVSGMKKIGELLSTDALKPYKVEDLPGVEGFNILGIPLP--KDQTDDAAFETFCRESVA   455 
CDH       RIGIDAALRGTVLTPPWLVNPVDKTVLLQALHDVVSN----IGSIPGLTMITPDVTQTLEEYVDAYDPATMNSNH-   469 
COX-1     --ITKNPQRGTFVYDAATDRAKLNWTRDQNAPAVN-------AAKALFDRINKANGTIYRYDLFGTQLKAFADDFC   440 
COX-2     --ITKNPERARFQFNSGTGKVDLTWAQSQNQKGID-------MAKKVFDKINQKEGTIYRTDLFGVYYKTWGDDFT   445 
Consensus                                                                              
 
            **                             A5            *       H13 
                                          ---             ---------------              
AAO       TIFHPVGTASMSPRGASWGVVDPDLKVKGVDGLRIVDGSILPFAPNAHTQGPIYLVGERGADLIKADQ--------   566 
CHD       TQYHPVGTCKMGVASDPLAVVDHQLRVHGLAGLRVVDASIMPTLIGANTNAPTIMIAEKIADAIKAHYAGLVCAEE   543 
CHO       TVYHPVGTVRMGAVEDEMSPLDPELRVKGVTGLRVADASVMPEHVTVNPNITVMMIGERCADLIRSA---------   529 
GOX-1     PNYHGVGTCSMMPK-EMGGVVDCDHRVYGVQGLRVIDGSIPPTQMSSHVMTVFYAMALKISDAILEDYASMQ----   583 
GOX-2     PNWHAVSSCSMMSR-ELGGVVDATAKVYGTQGLRVIDGSIPPTQVSSHVMTIFYGMALKVADAILDDYAKSA----   587 
HNL       SYWHYHGGCLVG------KVLDGDFRVTGINALRVVDGSTFPYTPASHPQGFYLMLGRYVGIKILQERSASDLKIL   525 
CDH       --WHN-VSSTTIGSSPQSAVVDSNVKVFGTNNLFIVDAGIIPHLPTGNPQGTLMSAAEQAAAKILALAGGP-----   537 
COX-1     --YHPLGGCVLG------KATDDYGRVAGYKNLYVTDGSLIPGSVGVNPFVTITALAERNVERIIKQDVTAS----   504 
COX-2     --YHPLGGVLLN------KATDNFGRLPEYPGLYVVDGSLVPGNVGVNPFVTITALAERNMDKIISSDIQ------   507 
Consensus                    V D    V G  GLRI D S  P                                   
                                   consensus 4 
AAO       ----------------- 
CHD       TMPVV------------   548 
CHO       RAGETTTADAELSAALA   546 
GOX-1     ----------------- 
GOX-2     ----------------- 
HNL       DSLKSAASLVL------   536 
CDH       ----------------- 
COX-1     ----------------- 
COX-2     ----------------- 
Consensus 
 
 

Fig. S1. Multiple alignment of AAO and related proteins obtained with ClustalW and ordered by 
sequence identity (NCBI entries, and identity percentages are provided): AAO, aryl-alcohol oxidase 
from P. eryngii (AAC72747); CHD, choline dehydrogenase from V. vulnificus (BAC95059; 34% 
identity); CHO, choline oxidase from Arthrobacter globiformis (AAP68832; 28% identity); GOX-1, 
glucose oxidase from A. niger (CAA34197; 28% identity); GOX-2, glucose oxidase from P. 

amagasakiense (AAD01493; 27% identity); HNL, hydroxynitrile lyase from Prunus amygdalus 

(O24243; 27% identity); CDH, flavin domain of cellobiose dehydrogenase from P. chrysosporium 
(Q01738; 23% identity); COX-1, cholesterol oxidase from Streptomyces sp. (P12676; 21% identity); 
and COX-2, cholesterol oxidase from Brevibacterium sterolicum (P22637; 21% identity). Residues 
have been highlighted as follows: black background, strictly conserved residues; gray background, 
conserved with respect to AAO sequence. Top line shows AAO secondary structure (α-helix and ß-
strand, in sheets A to D, numbering being based on that of glucose oxidase) and the eight residues 
modified by site-directed mutagenesis (asterisks). Bottom line shows four sequences conserved in 
GMC family (AAO residues are indicated when the consensus includes several possibilities).  
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