Responsable/s del laboratorio
IP/s del Grupo
Publicaciones seleccionadas
Monterroso B, Margolin W, Boersma AJ, Rivas G, Poolman B, Zorrilla S. [2024]. Macromolecular Crowding, Phase Separation, and Homeostasis in the Orchestration of Bacterial Cellular Functions. Chem Rev. 124(4):1899-1949. doi: 10.1021/acs.chemrev.3c00622.
Monterroso B, Robles-Ramos MÁ, Sobrinos-Sanguino M, Luque-Ortega JR, Alfonso C, Margolin W, Rivas G, Zorrilla S. [2023]. Bacterial division ring stabilizing ZapA versus destabilizing SlmA modulate FtsZ switching between biomolecular condensates and polymers. Open Biol.13(3):220324. doi: 10.1098/rsob.220324.
Rivas G, Minton AP. [2022]. Influence of Nonspecific Interactions on Protein Associations: Implications for Biochemistry In Vivo. Annu Rev Biochem. 91:321-351. doi: 10.1146/annurev-biochem-040320-104151.
Robles-Ramos MÁ, Margolin W, Sobrinos-Sanguino M, Alfonso C, Rivas G, Monterroso B, Zorrilla S. [2020]. The Nucleoid Occlusion Protein SlmA Binds to Lipid Membranes. mBio. 11(5):e02094-20. doi: 10.1128/mBio.02094-20.
Monterroso B, Zorrilla S, Sobrinos-Sanguino M, Robles-Ramos MA, López-Álvarez M, Margolin W, Keating CD, Rivas G. [2019]. Bacterial FtsZ protein forms phase-separated condensates with its nucleoid-associated inhibitor SlmA. EMBO Rep. 20(1). pii: e45946. doi: 10.15252/embr.201845946.
Monterroso B, Zorrilla S, Sobrinos-Sanguino M, Robles-Ramos MÁ, Alfonso C, Söderström B, Meiresonne NY, Verheul J, den Blaauwen T, Rivas G. [2019]. The Bacterial DNA Binding Protein MatP Involved in Linking the Nucleoid Terminal Domain to the Divisome at Midcell Interacts with Lipid Membranes. MBio. 10(3). pii: e00376-19. doi: 10.1128/mBio.00376-19.
Ramirez-Diaz DA, García-Soriano DA, Raso A, Mücksch J, Feingold M, Rivas G, Schwille P. [2018]. Treadmilling analysis reveals new insights into dynamic FtsZ ring architecture. PLoS Biol. 16(5):e2004845. doi: 10.1371/journal.pbio.2004845.
Sobrinos-Sanguino M, Zorrilla S, Keating CD, Monterroso B, Rivas G. [2017]. Encapsulation of a compartmentalized cytoplasm mimic within a lipid membrane by microfluidics. Chem Commun (Camb). 53(35):4775-4778. doi: 10.1039/c7cc01289f.
Rivas G, Minton AP. [2016]. Macromolecular Crowding In Vitro, In Vivo, and In Between. Trends Biochem Sci. 41:970-981.
Martos A, Jiménez M, Rivas G*, Schwille P* [2012]. Towards a bottom-up reconstitution of bacterial cell division. Trends Cell Biol. 22:634-643
Fondos
- 2024-2027: MINCELL - The physical basis of cell division in minimal and synthetic cells. The "Fundamentos" Research Program of BBVA Foundation.
- 2023-2027: DIVINOCELL - Reconstituting division in minimal cell-like systems. Spanish Government Plan Nacional I+D+I, PID2022-136951NB-I00.
- 2020-2023: BASYC - Bacterial division in synthetic cytomimetic environments. Spanish Goverment. Plan Nacional I+D+i, PID2019-104544GB-I00.
- 2017-2019: BIOROOMS - Analysis, synthesis and reassembly of the biorooms active in bacterial division. Spanish Government Plan Nacional I+D+i, BFU2016-75471-C2-1-P.
- 2015-2019: MASSTRPLAN - "MASS Spectrometry TRaining network for Protein Lipid adduct Analysis" EU Project 675132 (H2020-MSCA-ITN-2015). Innovative Training Network.
- 2015-2016: ODIVITUBE - Biochemical organization of minimal divisomes in the test tube. Spanish Government, Plan Nacional I+D+i, BFU2014-28941-C03-02.
- 2012-2014: SYNVISION - Synthetic biology of bacterial cell division: reconstruction of minimal divisomes in biomimetic membrane systems. Spanish Government, Plan Nacional I+D+i, BIO2011-28941-C03-03.
- 2011-2014: SYNTHETIC BIOLOGY OF BACTERIAL CELL DIVISION. Human Frontier Science Program RGP0050-2010.
- 2009-2013: DIVINOCELL - Exploiting Gram-negative cell division targets in the test tube to obtain anti-microbial compounds. European Commission, FP7-HEALTH-F3-2009-223431.