Description

Our group is focused on the study of lactic acid bacteria (LAB) which have probiotic potential, and their metabolic pathways, that lead to the synthesis of prebiotic compounds which have the ability to immunomodulate and/or other properties that are beneficial to human and animal health. The final objective is to identify microorganisms and their molecular products that could be used to develop human and animal functional foods possessing probiotic, prebiotic or symbiotic properties.

A promising area within functional foods is the development of symbiotic products consisting of a prebiotic ingredient and a probiotic bacterium. Foods containing LAB represent the prototype for functional foods. Nevertheless, the general use of probiotics is largely restricted to a few strains related to species belonging to the genera Bifidobacterium, Lactobacillus and Streptococcus, many of which produce exopolysaccharides (EPS). This fact suggests that at least part of the observed beneficial effect of these bacteria (many of which are components of the human gut microbiota) could be related to the anti-tumoral, anti-inflammatory, immunomodulatory, and cholesterol-reducing and anti-glucemic properties that have been reported for these biopolymers.On this basis our group is studying the probiotic potential of LAB strains that produce homopolysaccharides (β-glucans and dextrans) and heteropolysaccharides, the strains being isolated from food (meat, lactic and cereal-based products, as well as cider) in in vitro models (simulators of the gastro-intestinal tract and interaction with enterocyte cell-lines) and in a in vivo model using zebrafish (Danio rerio) larvae.

Some EPS belong to a family of compounds that are known to alter the biological response that can enhance or restore the immune system. The response to these biopolymers depends on their chemical structure, molecular mass and conformation, and our previous results have demonstrated the immunomodulatory and antiimflamatory ability of homopolysaccharides in vitro against human macrophages as well as in vivo using salmonids. Thus our group is purifying various EPS produced by BAL and determining their structures and molecular masses in collaboration with Dra. Alicia Prieto (CIB) with the objective of evaluating their immunomodulatory properties in vitro against human cell lines and in vivo in zebrafish models.

This area of research fell within the projects AGL2012-40084-C03 y AGL2015-65010-C3-1-R coordinated by the CIB with the participation of the groups of Dr. Mª Teresa Dueñas (Universidad del País Vasco, San Sebastian), of Dr. Miguel Angel Pardo (Centro Tecnológico AZTI-Tecnalia, Derio) and of Dr. Giuseppe Spano (Unversidad de Foggia, Italia) funded by the Spanish Ministerio de Economia y Competitividad and it has generated the current project RTI2018-097114-B-I00. The groups of Dr Rosa Aznar (Instituto de Agroquímica y Tecnología de Alimentos, CSIC, Valencia), Prof. Kihal Mebrouk (Universite de Oran, Algeria) and Prof. Imene Ouzari (Université Tunis El Manar, Tunisia) are also collaborating with the aim of carrying out a multi-disciplinary study on homopolysaccharides produced by bacteria isolated from food, including the production of functional foods as well as on probiotic, prebiotic and immunomodulatory properties.

References:

Werning, M.L., Corrales, M. A., Prieto, A., Fernández de Palencia, P., Navas, J. and López, P. (2008) Heterologous expression of a 2-substituted-(1→3)-β-D-glucan in Lactococcus lactis. Appl. Environ. Microbiol. 74:5259-5262.

Fernández de Palencia, P., Werning, M. L., Sierra-Filardi, E., Dueñas, M.T., Irastorza, A., Corbí, A. L. and López, P. (2009) Probiotic properties of the 2-substituted (1,3)-β-D-glucan  producing Pedioccus parvulus 2.6. Appl. Environ. Microbiol. 75:4887-4891.

Garai-Ibabe, G., Dueñas, M. T., Irastorza, A., Sierra-Filardi, E., Werning, M. L., López, P., Corbí, A. L. and Fernández de Palencia, P. (2010). Naturally occurring 2-substituted (1,3)-β-D-glucan producing Lactobacillus suebicus and Pediococcus parvulus strains with potential utility in the production of functional foods. Bioresource Technol. 101, 9254–9263.

Ibarburu, I., Aznar, R., Elizaquivel, P., García-Quintans, N., López, P., Munduate, A., Irastorza, A. and Dueñas, M.T. (2010). A real-time PCR assay for detection and quantification of 2- branched (1,3)-β-D-glucan producing lactic acid bacteria in cider. International. J. Food Microbiol. 93:335-347.

Elizaquível, P., Sánchez, G., Salvador, A., Fiszman, S., Dueñas, M.T., López, P., Fernández de Palencia, P. and Aznar, R. (2011). Evaluation of yogurt and various beverages as carriers of lactic acid bacteria producing 2-branched (1,3)-β-D-glucan. J. Dairy Sci. 94:3271-3278.

Werning, M.L., Notararigo, S., Nácher, M., Fernández de Palencia, P., Aznar, R. and López, P. (2012). Biosynthesis, purification and biotechnological use of exopolysaccharides produced by lactic acid bacteria. Chapter 5 In: Food additives. pp. 83-114. Ed: El-Samragy, Y. Intech. Croacia. ISBN 978-953-51-0067-6.

Russo, P., López, P., Capozzi, V., Fernández de Palencia, P., Dueñas, M.T., Spano, G., Fiocco, D. (2012). Beta-glucans improve growth, viability and colonization of probiotic microorganisms. Int. J. Mol. Sci. 13:6026-6039; doi:10.3390/ijms13056026.

Capozzi, V., Russo, P., Dueñas, M.T., López, P. and Spano, G. (2012). Lactic Acid Bacteria producing B-group vitamins: a great potential for functional cereals products. Appl. Microbiol. Biotechnol. 96:1383-1394 DOI: 10.1007/s00253-012-4440-2.

Notararigo, S., Nácher-Vázquez, M., Ibarburu, I., Werning, M.L., Fernández de Palencia, P., Dueñas, M.T., Aznar, R., López, P. and Prieto, A. (2013). Comparative analysis of production and purification of homo- and hetero-polysaccharides produced by lactic acid bacteria. Carbohy. Polym. 93:57–64.

Notararigo,  S., de las Casas-Engel,M., Fernández de Palencia, P., Corbí, A.L. and López, P. (2014) Immunomodulation of human macrophages and myeloid cells by 2-substituted (1-3)-β-D-glucan from P. parvulus 2.6. Carbohy. Polym. 112:109–113.

Werning, M. L., Pérez-Ramos,A., Fernández de Palencia, P., Mohedano,M. L., Dueñas,M. T., PrietoA. and LópezP. (2014) A specific immunological method to detect and quantify bacterial 2-substituted (1,3)-β-D-glucan. Carbohy. Polym. 113:39-45. DOI: 10.1016/j.carbpol.2014.06.072.

Arena M.P., Russo, P., Capozzi, V., López, P., Fiocco D., and Spano, G. (2014) Probiotic abilities of riboflavin-overproducing Lactobacillus strains: a novel promising application of probiotics. Appl. Microbiol. Biotechnol. 98:7569–7581. DOI 10.1007/s00253-014-5837-x98:7569–7581.

Russo P., Iturria I., Mohedano M.L., Caggianiello G., Rainieri S., Fiocco D., Pardo M.A., López P. and Spano G. (2015). Zebrafish gut colonization by mCherry-labelled lactic acid bacteria. Appl. Microbiol. Biotechnol. 99:3479-3490. DOI: 10.1007/s00253-014-6351-x.

Nácher-Vázquez, M., Ballesteros, N., Canales, A., Rodríguez Saint-Jean, S., Pérez-Prieto, S.I., Prieto, A., Aznar, R. and López, P. (2015). Dextrans produced by lactic acid bacteria exhibit antiviral and immunomodulatory activity against salmonid viruses. Carbohy. Polym. 124:292–301. http://dx.doi.org/10.1016/j.carbpol.2015.02.020.

Pérez-Ramos, A., Nacher-Vazquez M., Notararigo S., López P. and Mohedano M.L. (2015). Current and future applications of bacterial extracellular polysaccharides. In: Probiotics, Prebiotics, and Synbiotics: Chapter 22. pp. 329-344. Eds. Victor R. Preedy and Ronald Ross Watson. Elsevier Oxford, UK. ISBN: 9780128021897.

Russo, P., Valeria de Chiara, M.L., Capozzi, V., Arena, M.P., Amodio, M.L., Rascon, A., Dueñas, M.T., López, P. and Spano, G. (2016). Lactobacillus plantarum strains for multifunctional oat-based drinks. LWT Food Sci.Technol. 68:288–294. DOI 10.1016/j.lwt.2015.12.040.

Nácher-Vázquez, M., Ruiz-Masó, J.A., Mohedano, M.L., del Solar, G., Aznar, R. and López, P. (2017). Dextransucrase expression is concomitant with that of replication and maintenance functions of the pMN1 plasmid in Lactobacillus sakei MN1. Front. Microbiol. 8:2281. doi: 10.3389/fmicb.2017.02281.

Zarour, K., Vieco, N., Pérez,-Ramos, A., Nácher-Vázquez, M. , Mohedano, ML and López, P. Food ingredients synthesised by lactic acid bacteria. Handbook of Food Bioengineering (Multi Volume SET I-XX), Volume V: Microbial production of ingredients and additives, Alina Maria Holban, Alexandru Mihai Grumezescu Eds. ELSEVIER (Academic Press), Cambridge, UK, 2017, pp. 89-124. ISBN:9780128115206. http://it-book.org/pdf/microbial-production-of-food-ingredients-and-additives.

Zarour, K., Llamas, Mª G., Prieto, A., Rúas-Madiedo, P., Dueñas, M.T., Fernández de Palencia, P., Aznar, R., Kihal, M. and López, P.  (2017). Rheology and bioactivity of high molecular weight dextrans synthesised by lactic acid bacteria. Carbohy. Polym. 174: 646–657.

Pérez-Ramos, A., Mohedano, M.L., Pardo, M.A. and López P. (2018). β-glucan-producing Pediococcus parvulus 2.6: test of probiotic and immunomodulatory properties in zebrafish models. Front. Microbiol. 9:1684.

Llamas-Arriba, M.A., Pérez-Ramos, A., Puertas, A.I., López, P., Dueñas, M.T. and Prieto, A. (2018). Characterization of Pediococcus ethanolidurans CUPV141: a β-D-glucan- and heteropolysaccharide-producing bacterium. Front. Microbiol. 8:2281.

Puertas, A.I., Ibarburu, I., Zuriarrain, A., Berregi, I., López, P., Prieto, A., Aznar, R. and Dueñas, M.A. (2018). Disclosing diversity of exopolysaccharide-producing lactobacilli from Spanish natural ciders. LWT - Food Sci. Tech. 90:469-474.

Zarour, K., Prieto, A., Pérez-Ramos, A., Kihal, M., López, P. (2018). Analysis of technological and probiotic properties of Algerian L. mesenteroides strains isolated from dairy and non-dairy products. J. Funct. Foods 49:351-361. 

Llamas-Arriba, M.G., Puertas, A.I., Prieto, A., López, P., Cobos, M., Miranda, J.I., Marieta, C., Ruas-Madiedo, P., Dueñas, M.T. (2019). Characterization of dextrans produced by Lactobacillus mali CUPV271 and Leuconostoc carnosum CUPV411. Food Hydrocoll. 89:613–622. 

Besrour-Aouam, N., Mohedano, M.L., Fhoula, I., Zarour, K., Najjari, A., Aznar, R., Prieto, A., Ouzari, H.-I. and López, P. (2019). Different modes of regulation of the expression of dextransucrase in Leuconostoc lactis AV1n and Lactobacillus sakei MN1. Front. Microbiol. 10:959.

Besrour-Aouam, N., Fhoula, I., Hernández-Alcántara, A.M., Mohedano, M.L., Najjari, A., Prieto, A., Ruas-Madiedo, P., López, P., and Ouzari, H.-I. (2021). The role of dextran production in the metabolic context of Leuconostoc and Weissella Tunisian strains. Carbohy. Polym. 253:117254.

 

 

Members